adfm.202007478 (2).pdf (2.2 MB)
Download file

Inter-flake quantum transport of electrons and holes in inkjet-printed graphene devices

Download (2.2 MB)
journal contribution
posted on 27.10.2020, 14:46 authored by Feiran Wang, Jonathan Gosling, Gustavo Trindade, Graham Rance, Oleg Makarovsky, Nathan Cottam, Zakhar Kudrynskyi, Alexander BalanovAlexander Balanov, Mark GreenawayMark Greenaway, Ricky Wildman, Richard Hague, Christopher Tuck, Mark Fromhold, Lyudmila Turyanska
2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures made by sequential deposition of exfoliated 2D layers. There is a need for scalable manufacturing techniques capable of producing high‐quality large‐area devices comprising multiple 2D materials. Additive manufacturing with inks containing 2D material flakes is a promising solution. Inkjet‐printed devices incorporating 2D materials have been demonstrated, however there is a need for greater understanding of quantum transport phenomena as well as their structural properties. Experimental and theoretical studies of inkjet‐printed graphene structures are presented. Detailed electrical and structural characterization is reported and explained by comparison with transport modeling that include inter‐flake quantum tunneling transport and percolation dynamics. The results reveal that the electrical properties are strongly influenced by the flakes packing fraction and by complex meandering electron trajectories, which traverse several printed layers. Controlling these trajectories is essential for printing high‐quality devices that exploit the properties of 2D materials. Inkjet‐printed graphene is used to make a field effect transistor and Ohmic contacts on an InSe phototransistor. This is the first time that inkjet‐printed graphene has successfully replaced single layer graphene as a contact material for 2D metal chalcogenides.

Funding

Enabling Next Generation Additive Manufacturing

Engineering and Physical Sciences Research Council

Find out more...

Engineering and Physical Sciences Research Council. Grant Number: EP/P029868/1

History

School

  • Science

Department

  • Physics

Published in

Advanced Functional Materials

Volume

31

Issue

5

Publisher

Wiley

Version

VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Wiley under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Publication date

2020-10-26

Copyright date

2020

ISSN

1616-301X

eISSN

1616-3028

Language

en

Depositor

Dr Alexander Balanov. Deposit date: 26 October 2020

Article number

2007478