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Abstract 

An objective measure that will predict discomfort reliably, and which can be used at an 

early stage in the development of a vehicle and its seating, would have the potential to 

reduce the prevalence of musculoskeletal problems associated with driving.  This paper 

reports on an extended road trial study to further investigate the potential value of 

pressure distribution data in the prediction of reported discomfort.  Road trial data were 

collected from three cars and then interface pressure data were recorded for each of the 

three seats.  Clear differences were identified between the cars with respect to reports of 

discomfort.  However, no clear relationship was found between interface pressure data 

and reported discomfort. 
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1. Introduction 

The Vehicle Ergonomics Group (VEG) has evaluated over 100 vehicles since 1981 and 

has established methods of collecting mainly subjective data for evaluating the driving 

workstation during extended road trials.  Whilst these data are of high quality, it is a 

lengthy process, sometimes taking several months to complete and it is often carried out 

at a late stage in the vehicle's development when the car is a pre-production prototype 

or already in production (Porter, 1995).  An accurate method for predicting body area 

discomfort, and consequently assessing the quality of the seat and driving package, 

would have a major advantage of providing rapid information which could be used 

early on in the design process. 

 There is potential for seated pressure distribution to be used as a predictor of 

discomfort.  For example, the tissues covering the ischial tuberosities can be subjected 

to extremely high pressures during sitting that are sufficient to reduce blood circulation 

through the capillaries.  If there is no readjustment of body position, then metabolite 

build up and the symptoms of aches, pain, discomfort and numbness occur.  It then 

seems logical in any seating design that areas of high pressure should be minimised and 

pressure optimally distributed across the sitting region.  Car manufacturers are already 

interested in using interface pressure measurement as a technique for predicting 

discomfort (e.g. Lee and Ferraiuolo, 1993; Gross et al, 1994; Thakurta et al, 1995). 

 The literature attempting to correlate discomfort with interface pressure data is 

not extensive, is of limited value and is discussed in a previous paper (Gyi and Porter, 

1999).  The conclusions are generally contradictory and often based on short duration 

trials of 5, 10 or 15 minutes (e.g. Gross et al, 1994; Lee and Ferraiuolo, 1993; Shen and 

Galer, 1993), such that further exploration of the technique is clearly required.  Earlier 

research on interface pressure measurement carried out by the authors (Gyi et al, 1998; 

Gyi and Porter, 1999) has not shown a clear relationship between discomfort and 

interface pressure data, based on data from 2.5 hour laboratory 'driving trials' 

controlling for either seat design or posture. 

 This paper describes an extended road-trial study to further investigate the 

potential value of pressure distribution data in the prediction of reported discomfort.  

Three cars were used in the road trials study (one prototype and two production models 

from competitor manufacturers). 
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2. Method 

2.1 Participant selection 

A sample of 18 drivers, 8 male and 10 females, was carefully selected from the British 

public to include a wide range of body sizes (Figure 1).  Individuals were chosen 

initially by height and then the sample was refined to produce a good range across 

percentiles for both males and females in the other six anthropometric variables 

measured.  Driving licenses were checked and prospective subjects took a 15 minute 

'test drive' accompanied by the experimenter.  Drivers who were nervous or experienced 

any problems were excluded.  The mean age of the selected sample was 40 years (SD 

12). 
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Figure 1.  Anthropometric data for males and females.  Percentile value is for British 

adults (Pheasant, 1990). 
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2.2 Road Trials 

The road trials involved three left-hand drive cars from the same class (Cars A, B and 

C).  Each participant drove all three cars on different days and, whenever possible, on 

the same day of the week, at the same time of day, with the same experimenter and in a 

balanced order.  This standardisation helped to control for the effects of extraneous 

variables, which can influence subjective discomfort data (e.g. previous activity, road 

traffic, fatigue etc.).  In addition, participants were requested to keep their activities as 

similar as possible prior to driving on each the trial days.  Each road trial took 

approximately 2.5 hours and included 15 minutes of simulated showroom conditions, 

followed by approximately 120 minutes of driving over the standard 60 mile test route 

involving different road conditions (open roads, towns and motorways), with 15 

minutes of debriefing at the end.  During each road trial, the participants completed a 

seat feature checklist (similar in nature to that used by Shackel et al, 1969) and a 20 

body part comfort/discomfort chart (see Figure 3 for a list of body areas; see also Gyi & 

Porter, 1999, for format), The chart incorporated a 7 point scale (1 very comfortable; 2 

comfortable; 3 fairly comfortable; 4 neutral; 5 slightly uncomfortable; 6 uncomfortable; 

7 very uncomfortable) and was administered after approximately 15, 45, 75, 105 and 

135 minutes of driving whilst the car was stationary in convenient lay-bys.  Such a 

rating scale (5 or 7 point) has been used extensively by the first author for over 20 

years.  It is quick and easy to use with no training required (drivers are simply asked to 

use the scale in a consistent manner from trial to trial).  Analysis can be conducted 

using the entire scale (e.g. Freidman’s two-way ANOVA) or by collapsing the scale to 

2 points: ‘no discomfort’ (scale points 1-4) and ‘discomfort’ (scale points 5-7). In the 

latter case, Cochran’s Q Test can be used for analysis. Using the whole scale for 

analysis may identify differences between seats, even if the seats are all generally good 

or poor.  The dichotomous scale, whilst crude, often reveals a clearer picture as it 

relates to the percentage of drivers reporting discomfort in each seat. It is recommended 

that both complementary analyses are conducted.  Comparative studies for cars from 

the same market sector have revealed problems with prototype seats that have been 

subsequently rectified following design interventions and re-testing (see Porter 1995).  

Participants also completed further questionnaires on aspects of the car such as the 

displays and controls, seat design and adjustment, seat belts and mirrors. The positions 

of the seat and controls were recorded at the end of each trial. 
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2.3 The collection of interface pressure and posture data 

Interface pressure readings were recorded using the Pliance system, a capacitive method 

developed by the German company Novel gmbh.  This system consists of a flexible 

and elastic measuring mat, a multi-channel analyser, a calibration device and a software 

package for personal computers.  According to the manufacturers once calibrated, the 

system could be expected to take accurate readings within +/-5% for six months.  Two 

of the measuring mats were required for this study, each 2.6 mm thick, with a total 

sensor area of 506 x 506 mm, containing 32 x 32 sensors (1024 sensors) arranged in a 

matrix configuration.  The 2000/B-5 Pliance analyser for two mats was used which has 

the capacity of reading 5000 sensors per second.   

It was considered that the pressure sensing mat would have an effect on subject-

car seat interface (and consequently upon any discomfort experienced) if used 

throughout the road trials.  For example, as the mat was non-absorbent it would have 

been expected to increase both skin temperature and moisture levels.  In addition, the 

mat may have encouraged the driver to slide forwards on the seat with associated 

changes in posture and pressure distribution.  For such reasons, all subjects returned for 

a one hour experimental session following the road trials to measure their interface 

pressure in each of the three cars; the seat and controls being set-up individually as in 

each road trial.  They were requested to wear clothes suitable for driving but without 

heavy seams, buttons or pockets in order that there was minimal effect on the pressure 

readings. Subjects adopted their usual driving position for this measurement (i.e. semi-

depressing the accelerator, hands on the steering wheel and looking ahead), held for 30 

seconds.  The car was stationary and was parked in a large garage with a level floor. 

 Driving posture was measured using a goniometer with subjects adopting their 

normal driving position in each of the left-hand drive cars.  Joint markers were 

positioned on anatomical landmarks on the left side of the body (7th cervical vertebra, 

acromium, lateral epicondyle, ulnar styloid, greater trochanter, lateral condyle and 

lateral malleolus) to aid measurement through clothing.  The average of three readings 

of each angle, for each car was recorded.  Postural angles were defined as follows, 

adapted from Grandjean et al (1983), Bridger (1988) and Bhatnager et al (1985):- 

(i) Ankle angle:  The angle between a line from the lateral condyle to the lateral 

 malleolus and a line parallel with the foot. 
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(ii) Arm flexion:  The angle between the vertical and a line from the acromium to the 

 lateral epicondyle. 

(iii) Elbow angle:  The angle between a line from the acromium to the lateral 

 epicondyle and a line from the ulnar styloid to the lateral epicondyle. 

(iv) Knee angle:  The angle between a line from the greater trochanter to the lateral 

 condyle and a line from the lateral malleolus and the lateral condyle. 

(v) Neck inclination:  The angle between the vertical and a line from the 7th cervical 

 vertebrae to the auditory canal. 

(vi) Thigh from horizontal:  The angle between the horizontal and a line from the 

 lateral condyle to the greater trochanter 

(vii) Thigh from vertical:  The angle between the vertical and a line from the 

 acromium to the greater trochanter. 

(viii) Trunk-thigh angle:  The angle between a line from the acromium to the greater 

 trochanter and a line from the lateral condyle to the greater trochanter. 

 

2.4 Data analysis 

The analyses are presented for males and females together as one sample for two main 

reasons:- 

(1) Extensive data exploration found no consistent, significant differences 

 between males and females in either the comfort or interface pressure data, 

 for the three cars. 

(2) It is unlikely that car seats will be designed to reflect gender differences. 

The mean (Pmean) and maximum (Pmax) interface pressure variables were extracted 

for each of the whole seat, the left and right ischial tuberosities (IT), left and right 

thighs, upper back and lower back.  The method employed was based on previous work 

(Gyi and Porter 1999).  The mean value (over the 30 seconds) for each sensor was 

calculated using the Pliance software and displayed as a point on the pressure map.  The 

pressure variables were calculated by consideration of the whole pressure map; the 

readings of 20 sensors (area 5000 mm2) were used to define the area of contact under 

each IT and 29 sensors (area 7250 mm2) to define a rectangular area of contact under 

the centre of each thigh.  The back pressure variables were calculated from the sensors 

identified as the contact area above the lower tip of the scapula (upper back) and the 

area below this (mid and lower back).  The ITs were typically clearly defined on the 



9 

pressure plots and it was easy to select 20 sensors to define these areas for each 

subject/seat pairing.  The location of the selected thigh sensors varied depending upon 

the length of each subject’s thigh.  The IT and thigh sensors did not overlap. 

 In order to investigate the relationship between interface pressure and discomfort, 

three discomfort variables (from the seven point rating scale) were calculated for each 

of the buttocks, thighs and low back.  These were: mean rating over the trial, rating 

after 135 minutes and total minutes of reported discomfort.  The latter measure was 

calculated by assigning 30 minutes of discomfort for each report of discomfort (i.e. a 

rating of 5, 6 or 7).  The total number of minutes of reported discomfort for a specific 

body area was calculated from the 5 assessments, the maximum number being 150 

minutes. 

 Parametric and nonparametric measures of linear association and sample 

differences were employed.  The extensive data exploration and analyses were 

performed using SPSS for Macintosh Computers (Norusis, 1990).   

 

3. Results 

3.1 Reported discomfort 

Friedman’s two-way Analysis of Variance (ANOVA) by ranks was calculated from the 

road trial discomfort data at each of the five time periods.  Cochran's Q test was applied 

to the same data converted to dichotomous form (discomfort / no discomfort).  

Discomfort was clearly observed to increase over time, for example, the back, buttocks 

and thighs as illustrated in Figure 2.  Table 1 shows the body areas with significant 

differences in discomfort between the cars.  Car C received the highest percentage of 

complaints of discomfort after 135 minutes in 18 out of the 20 body areas.  High levels 

of low back discomfort were evident after just 15 minutes in Car C (Figure 2).  Car C 

also had the greatest number of minutes of reported discomfort over the 2.5 hours in 12 

out of the 20 body areas evaluated (Figure 3).   
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Table 1.  Significant differences, and those approaching significance, in the reported 

discomfort between the three cars over time (n=18). 

 

 

Body area Number of 

minutes 

Car A 

% 

Car B 

% 

Car C 

% 

Cochran's Q Friedman 

Left buttock 45 

75 

105 

135 

0 

17 

6 

22 

11 

11 

22 

17 

33 

39 

33 

44 

** 

* 

(a) 

ns 

ns 

* 

ns 

* 

 

Right buttock 45 

75 

105 

135 

0 

17 

11 

22 

0 

11 

22 

17 

33 

44 

44 

50 

** 

* 

* 

* 

ns 

** 

* 

** 

 

Left thigh 45 

135 

6 

11 

11 

17 

22 

44 

(a) 

* 

ns 

ns 

 

Right thigh 45 

105 

135 

11 

17 

17 

6 

11 

22 

22 

33 

44 

(a) 

* 

* 

ns 

(a) 

ns 

 

Low back 15 

45 

75 

105 

135 

0 

0 

6 

17 

28 

6 

6 

11 

11 

17 

28 

28 

33 

50 

50 

** 

** 

** 

* 

(a) 

ns 

ns 

* 

*** 

** 

 



11 

Mid/low back 15 

45 

75 

105 

135 

0 

0 

6 

14 

25 

3 

3 

11 

14 

11 

14 

19 

28 

36 

47 

** 

** 

** 

(a) 

* 

ns 

* 

** 

*** 

*** 

 

Upper back 105 

135 

17 

17 

0 

11 

28 

39 

* 

(a) 

ns 

ns 

 

ns = not significant, (a) = 0.1>p>0.05, * = p<0.05, ** = p<0.01, *** = p<0.001 
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Figure 2.  Percentage of drivers (n=18) reporting discomfort at 15, 45, 75, 105 and 135 

min of simulated driving. 
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Figure 3.  Driver’s mean number of minutes of reported discomfort. 
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A comparison of the mean number of minutes of reported discomfort in Car C 

with the durations for Cars A and B, clearly show that Car C was appreciably more 

uncomfortable.  For example, in the lower back: 57 minutes versus 15 minutes for Cars 

B and C; in the right buttock: 55 minutes versus 17 minutes for Cars B and C; and in 

the right thigh: 44 minutes versus 24 and 17 minutes for Cars A and B respectively.  

The extent of these differences in reported discomfort has considerable design 

relevance and it would be essential that any predictive method for assessing discomfort 

would be able to identify Car C as being markedly worse that the other two cars in this 

respect. 

 

3.2 Posture 

Using one-way ANOVA for repeated measures, significant differences were found 

between the cars for foot-calf angle, arm flexion, elbow angle, knee angle and thigh 

angle from the horizontal (Table 2).  Drivers in Car C were significantly more extended 

in the knees (3-5 degrees) and ankles (7-11 degrees), and more flexed in the arms (5-9 

degrees) and elbows (10-12 degrees).  Neck and trunk inclination and trunk-thigh 

angles were very similar between cars.  It should be noted that the seat height in Car C 

was the lowest of the three cars, which helps to explain the leg posture. 

 

3.3 Interface pressure data 

Table 3 presents the interface pressure data for the three cars and significant differences 

using one-way ANOVA for repeated measures.  Pressure values are shown in mmHg (1 

mmHg = 133.3 Pa).  Car B had significantly lower IT pressure values, for example a 

Pmean of 36 mmHg in the left IT compared with 44 mmHg (Cars A and C).  Thigh 

pressure values in Car B were the highest for example, a Pmean of 18 mmHg in the left 

thigh compared with 12 mmHg (Car A) and 16 mmHg (Car C).  There were no 

significant differences between the cars for the back pressure values. 
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Table 2.  Observed postural angles for the three cars (n=18). 

 

Measurement (degrees) Car A 

Mean (SD) 

Car B 

Mean (SD) 

Car C 

Mean (SD) 

Significance 

Ankle angle 

Arm flexion 

Elbow angle 

Knee angle 

Neck inclination 

Thigh from horizontal 

Trunk from vertical 

Trunk-thigh angle 

101 (8.3) 

48 (11.3) 

114 (18.8) 

112 (11.6) 

55 (9.7) 

16 (5.1) 

20 (5.7) 

94 (8.3) 

105 (6.9) 

52 (12.2) 

116 (20.6) 

114 (8.7) 

55 (10.4) 

14 (3.8) 

20 (5.8) 

95 (7.9) 

112 (10.1) 

43 (11.2) 

104 (16.5) 

117 (9.3) 

54 (10.3) 

16 (5.3) 

20 (4.6) 

92 (6) 

**** 

**** 

**** 

* 

ns 

* 

ns 

ns 

ns = not significant, (a) = 0.1>p>0.05, * = p<0.05, ** = p<0.01, *** = p<0.001, 

**** = p<0.0001 

 

 

Table 4.  Significant Spearman's rank-order correlation coefficients (p<0.05) between 

the comfort and interface pressure variables. 

 

Measurement  Corresponding comfort variable (r=) 

(mmHg) Car A Car B Car C 

Right IT 

Pmean 

 

 

 

15 mins (-.49) 

 

Right thigh 

Pmean 

Pmax 

 

mean rating (.52) 

 

 

15 mins (.57) 

mean rating (.47) 

 

Upper back 

Pmean 

  

135 mins (.61) 

mean rating (.58) 
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Table 3.  Interface pressure data for the three cars (n=18). 

 

Measurement (mmHg) Car A 

Mean (SD) 

Car B 

Mean (SD) 

Car C 

Mean (SD) 

Significance 

Left IT 

Pmean 

Pmax 

 

44 (11.7) 

57 (17.1) 

 

36 (7.1) 

47 (12.8) 

 

44 (6.7) 

60 (12.5) 

 

*** 

* 

Right IT 

Pmean 

Pmax 

 

38 (9.1) 

53 (14.2) 

 

35 (5.3) 

48 (8.6) 

 

37 (8.7) 

52 (10.7) 

 

ns 

ns 

Left thigh 

Pmean 

Pmax 

 

12 (6.6) 

22 (9.4) 

 

18 (5.7) 

25 (6.3) 

 

16 (6.8) 

24 (7.1) 

 

*** 

ns 

Right thigh 

Pmean 

Pmax 

 

13 (6.3) 

22 (8.7) 

 

17 (6.5) 

24 (7.8) 

 

14 (5.1) 

23 (7.7) 

 

* 

ns 

Low & mid back 

Pmean 

Pmax 

 

11 (4.6) 

30 (11.9) 

 

12 (3.4) 

33 (12.5) 

 

11 (4.6) 

34 (15.9) 

 

ns 

ns 

Upper back 

Pmean 

Pmax 

 

10 (4.4) 

27 (8.7) 

 

9 (5.2) 

27 (14.4) 

 

9 (4.1) 

28 (9.5) 

 

ns 

ns 

ns = not significant, (a) = 0.1>p>0.05, * = p<0.05, ** = p<0.01, *** = p<0.001
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3.4 Correlations between interface pressure and comfort 

Nonparametric correlation coefficients were calculated between the discomfort 

variables for each of the buttocks, thighs and back (at 15 minutes, 135 minutes, mean 

rating over the trial and total minutes of reported discomfort) and the corresponding 

interface pressure variables (mean and maximum) – see Table 4.   Five, of the six in 

total, significant (p<0.05) Spearman's rank order correlation coefficients were found 

within the data for Car B.  These were Pmean under the right IT and the right buttock 

comfort rating at 15 minutes (r= -0.49); Pmax under the right thigh and the right thigh 

comfort rating at 15 minutes (r=0.57) and the mean rating (r=0.47); and Pmean in the 

upper back and the upper back comfort rating at 135 minutes (r=0.61) and mean rating 

(r=0.58).  The only significant correlation for Car A was Pmean under the right thigh 

and the thigh mean rating (r=0.52).  No significant correlations were found within the 

data for Car C.  A series of scattergraphs were also created to aid the identification of 

non-linear relationships but no consistent picture emerged. 

 

4. Discussion 

There was strong agreement amongst the subjects that Car C was the most 

uncomfortable of the three cars when considering buttock, thigh and back discomfort.  

Figures 2 and 3 clearly expose this car as a potential 'health hazard' given the level of 

reported discomfort in comparison to the other two cars.  Car C was not the prototype 

car, but had been in production for several years.  It would be of considerable interest to 

interview long term owners of these cars to assess whether owners of Car C actually 

experienced a higher prevalence of chronic musculoskeletal problems.  Unfortunately, 

this could not be undertaken. 

 If interface pressure is to be successfully used by seat manufacturers as a primary 

means of predicting occupant discomfort, then this method must be capable of 

identifying Car C as providing unacceptably high levels of discomfort.  However, only 

four significant differences were found between the vehicles for the interface pressure 

data (Table 3), despite the very substantial discomfort differences.  The IT pressures 

recorded in Cars A and C were very similar with means of 41.0 and 40.5 mmHg and 

maxima of 55.0 and 56.0 mmHg, respectively (avaraged across left and right ITs).  

However, discomfort in the buttocks showed extensive differences with 22% of drivers 

in Car A reporting discomfort compared to 50% in Car B after 135 minutes of driving.  
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Similarly, the mean number of minutes of reported discomfort in the right buttock was 

only 17 minutes compared to 55 minutes in Car C. 

Thigh pressures recorded in Car C were inside the range recorded in Cars A and B 

even though 49% of drivers in Car C reported thigh discomfort compared to only 17% 

and 22% in Cars A and B.  Similarly, the mean number of minutes of reported 

discomfort in the right thigh was 44 minutes in Car C compared to 24 and 17 minutes in 

Cars A and B. 

No significant pressure differences were observed for the back areas even though 

50% of drivers in Car C reported low back discomfort at 135 minutes compared to 28% 

and 17% in Cars A and B.  Similarly, the mean number of minutes of reported 

discomfort in the low back was 57 minutes in Car C compared to 15 minutes for Cars A 

and B. 

Furthermore, out of 240 Spearman's rank correlation coefficients calculated 

between buttock, thigh and back pressure and comfort variables, there were only six 

significant correlations.  None of these were in Car C, the vehicle with the most 

reported discomfort.  It was thus deduced that no clear and consistent relationship 

existed between subjective ratings of discomfort and the interface pressure readings 

selected for these cars. 

Arm flexion, elbow, knee and ankle angles for all the cars were generally within 

the ranges recommended for comfort by Rebiffe (1969).  Recent work by Porter and 

Gyi (1998) supports this with the exception of ankle angle in Car C being greater than 

recommended.  Subjects in Car C also had significantly larger knee angles than other 

vehicles and provided the most complaints of knee discomfort.  It was observed that the 

subjects' knees were inclined to press against the centre console in Car C that could 

have contributed to some of these complaints.  Subjects in Car C also had a more flexed 

upper limb posture, although reported arm and shoulder discomfort were not 

significantly different between vehicles. 

 The lack of a simple relationship between pressure values and reported discomfort 

during an extended drive highlights a real concern that the quality of seat design will 

not improve if such an objective predictive technology is going to be used in car seat 

design without validation.  The authors do see practical use for interface pressure 

measurement in exploring, at an early development stage, the effect of changing seat 

design variables upon the resulting pressure distribution for a representative sample of 

occupants.  Such variables could include a change in foam density or thickness, the use 
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of different covering materials and the location of stitching as well as modification to 

the adjustability of the seat.  The objective pressure data could be used to understand 

the influence of the above changes in seat design upon issues such as seat hardness and 

support.  However, the gold standard for assessing occupant comfort/discomfort still 

requires subjective data from road trials. 

 This present study recorded the ‘static’ interface pressure data with the vehicle 

stationary for technical and safety reasons.  As car seat manufacturers are increasingly 

using static data in the development of their prototype seats, there is a clear need to 

determine whether such data can usefully predict discomfort.  The results of this study 

do not support such use.  It can be argued that static data are unlikely to predict driver 

discomfort as this is a dynamic phenomenon.  For example, upon the onset of 

discomfort in the right thigh the driver may change posture (consciously or 

subconsciously) to place more pressure under the left thigh. Future research should 

examine whether detailed analyses of changes in driving posture and ‘dynamic’ 

interface pressures during the road trials can provide a more consistent relationship with 

reported discomfort.  In the measurement of dynamic interface pressure over time, it is 

particularly important that: the pressure sensors are unobtrusive at the seat/person 

interface; the system is practical to use when driving; the performance of the sensors are 

not adversely affected by the seated subject over a long drive; and that the large amount 

of data collected are easily collated and quantified in a suitable output format (Gyi et al, 

1998).  Also, factors such as poor breathability, and the coefficient of friction of any 

pressure-sensing mat are likely to directly influence seating comfort.   

Postural fixity is one of the major problems facing the design of car seating, 

particularly for the driver who is fixed in position by the pedals, steering wheel, seat 

belt, lateral support, and the need to look directly ahead for most of the journey.  The 

increasing acceptance of dynamic seating in the office suggests that future cars should 

incorporate seating designs that permit frequent changes in posture and interface 

pressure distribution.  The constraints of safe driving will mean that any changes to the 

shape of the seat or its adjustment will need to be carefully controlled and limited in 

their range.  The design of an integrated package involving changes to the nature of the 

seat interface (e.g. hardness, support, massage effect) and the concerted adjustment of 

the seat and primary controls to provide a variety of postures to suit each individual 

driver's body size, build and personal preferences, may confer significant benefits to the 

high mileage driver.  
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5. Conclusions 

This research has confirmed that the simple quantification of static seat interface 

pressure data from a variety of individuals, with the assumption that high (or low) 

pressure values are predictors of reported discomfort during an extended drive, is 

unsatisfactory.  It thereby supports the conclusion of the previously reported laboratory 

based study (Gyi and Porter, 1999). 

As driver discomfort is a dynamic phenomenon, it is recommended that dynamic data 

are captured regarding changes over time in driving posture and interface pressures.  It 

is important that the recording equipment does not, in itself, cause the driver to modify 

his or her posture or to influence discomfort directly.  Further research is necessary to 

identify if there are any consistent relationships between these dynamic measures and 

the reported discomfort during the trial.  Until then, the gold standard for determining 

driver discomfort and the comparative evaluation of seat comfort will remain with the 

use of carefully controlled subjective data.  
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