Investigation on the removal of the major cocaine metabolite (benzoylecgonine) in water matrices by UV254/H2O2 process by using a flow microcapillary film array photoreactor as an efficient experimental tool
posted on 2016-01-12, 12:17authored byGianluca Li-PumaGianluca Li-Puma, Danilo Russo, Danilo Spasiano, Marianna Vaccaro, Kristin H. Cochran, Susan D. Richardson, Roberto Andreozzi, Nuno Reis, Raffaele Marotta
A microcapillary film reactor (MCF) was adopted to evaluate and compare the removal efficiency of benzoylecgonine (BE), an emerging micropollutant deriving from illicit drug abuse (cocaine), in different aqueous matrices: milliQ water, synthetic and real wastewater and surface water. The removal processes investigated were the direct photolysis with UV radiation at 254 nm, and the advanced oxidation process (AOP) with the same UV radiation and hydrogen peroxide. As a result of the microfluidics approach developed through an innovative experimental apparatus, full conversion of BE was reached within a few seconds or minutes of residence time in the MCF depending on the process conditions adopted. The radiation dose was estimated to be approximately 5.5 J cm−2. The innovative MCF reactor was found to be an effective tool for photochemical studies, especially when using highly priced, uncommon, or regulated substances. The removal efficiency was affected by the nature of the aqueous matrix, due to the presence of different xenobiotics and natural compounds that act primarily as HO• radical scavengers and secondly as inner UV254 filters. Moreover, nano-liquid chromatography (LC)-high resolution-mass spectrometry analysis was utilized to identify the main reaction transformation products, showing the formation of hydroxylated aromatics during the photochemical treatment.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
Water Research
Citation
RUSSO, D. ... et al, 2015. Investigation on the removal of the major cocaine metabolite (benzoylecgonine) in water matrices by UV254/H2O2 process by using a flow microcapillary film array photoreactor as an efficient experimental tool. Water Research, 89 (1), pp.375–383
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2016
Notes
This paper was accepted for publication in the journal Water Research and the definitive published version is available at http://dx.doi.org/10.1016/j.watres.2015.11.059.