Macroscopic dynamics of soliton gases can be analytically described by the thermodynamic limit of the Whitham equations, yielding an integro-differential kinetic equation for the density of states. Under a delta-functional ansatz, the kinetic equation for soliton gas reduces to a non-diagonalisable system of hydrodynamic type whose matrix consists of several 2 × 2 Jordan blocks. Here we demonstrate the integrability of this system by showing that it possesses a hierarchy of commuting hydrodynamic flows and can be solved by an extension of the generalised hodograph method. Our approach is a generalisation of Tsarev’s theory of diagonalisable systems of hydrodynamic type to quasilinear systems with non-trivial Jordan block structure.
Funding
Russian Science Foundation No. 21-11-00006, https://rscf.ru/project/21-11-00006/
Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-02-2021-1748)
This is an Open Access Article. It is published by Springer under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/