LES and ILES simulations of free-jets
A systematic numerical study was performed to investigate the influence of subgrid-scale (SGS) treatments on the simulation of turbulent free-jets. Large eddy simulations (LES) of such flows were performed to assess the accuracy of two SGS approaches: the detached eddy simulation and the dynamic Smagorinsky model (DSM). The Non-oscillatory Forward in Time-Multidimensional Positive Definite Advection Transport Algorithm (NFT-MPDATA) numerical scheme was employed to integrate the Navier–Stokes equations for incompressible flows. MPDATA due to its self-regularisation property is used to implicitly provide SGS effects. Two options of implicit LES (ILES) are investigated: ILES-NS, which solves the Navier–Stokes equations without an explicit SGS model, and ILES-EU that solves the Euler equations where viscous terms are absent. The performance of each approach was evaluated focusing on key global characteristics of jets, self-similar properties, and energy spectra. Quantitative and qualitative comparisons showed that all simulations were in good agreement with laboratory experiments, prior numerical studies, and each other, thus confirming the validity of the numerical approach and suitability of ILES for this class of flows. Additionally, energy spectra analysis revealed that ILES can reproduce the −5/3−5/3 and −7−7 gradients that signify the universal inertia subrange and dissipation range for turbulent free-jets.
Funding
Horizon 2020 Research and Innovation Programme (ESCAPE2 grant agreement no. 800897)
History
School
- Mechanical, Electrical and Manufacturing Engineering
Published in
Flow, Turbulence and CombustionVolume
110Issue
3Pages
547-579Publisher
SpringerVersion
- VoR (Version of Record)
Rights holder
© The Author(s)Publisher statement
This is an Open Access article published by Springer Nature and is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Acceptance date
2022-11-21Publication date
2022-12-07Copyright date
2022ISSN
1386-6184eISSN
1573-1987Publisher version
Language
- en