
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Low-latency service function chain migration in edge-core networks basedLow-latency service function chain migration in edge-core networks based
on open Jackson networkson open Jackson networks

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1016/j.sysarc.2022.102405

PUBLISHER

Elsevier BV

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This paper was accepted for publication in the journal Journal of Systems Architecture and the definitive
published version is available at https://doi.org/10.1016/j.sysarc.2022.102405

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Liang, Wenjie, Lin Cui, and Fung Po Tso. 2022. “Low-latency Service Function Chain Migration in Edge-core
Networks Based on Open Jackson Networks”. Loughborough University.
https://hdl.handle.net/2134/19070177.v1.

https://lboro.figshare.com/
https://doi.org/10.1016/j.sysarc.2022.102405

Low-Latency Service Function Chain Migration in
Edge-Core Networks based on Open Jackson Networks

Wenjie Lianga, Lin Cuia,∗, Fung Po Tsob

aDepartment of Computer Science, Jinan University, Guangzhou, China
bDepartment of Computer Science, Loughborough University, UK

Abstract

Multi-access Edge Computing (MEC) offers cloud computing capabilities at the edge of the network. Growing demand for low-
latency services requires Service Function Chains (SFCs) to be scaled up beyond MEC network to core network. To adapt to
network dynamics and provide low-latency services, being able to migrate SFCs when needed is of paramount importance. However,
migration of SFCs among edge and core networks such that average latency is optimized as well as considering resource consumption
is an intractable challenge because improper migration of Virtual Network Functions (VNFs) results in failure of meeting the
requirements of network policies. In this paper, we investigate SFCs in edge-core networks and model the Latency-aware Edge-Core
SFCs Migration problem based on open Jackson networks. Two SFC migration algorithms, i.e., Profit-driven Heuristic Search
(PHS) and Average Utilization Based (AUB), are proposed to efficiently optimize average latency of all SFCs in edge-core networks.
Extensive evaluation results show that PHS optimizes average latency by 19.5%, while AUB can further reduce average latency by
up to 36.9% by allowing a marginally higher number of VNF migrations.

Keywords: SFC Migration, MEC, Core Network, Latency

1. Introduction

Recent years have seen proliferating demand from mobile
users for latency-sensitive applications and services, such as aug-
mented reality (AR), autonomous vehicles (AVs) and ultra-low
latency video streaming [1], etc. In response to this demand,
Multi-access Edge Computing (MEC) architecture has emerged
to provide network services in closer proximity to user equip-
ment (UE). Meanwhile, network services are usually formed by
ordered collections of network functions (NFs) like firewalls,
proxy servers and load balancers, etc., namely Service Function
Chains (SFCs). With the advent of Network Function Virtualiza-
tion (NFV) [2], most NFs can be virtualized as Virtual Network
Functions (VNFs).

When more and more SFCs are deployed, scaling up SFCs in
MEC-enabled networks is difficult as edge networks usually fall
short of computing resources [3]. In comparison, core network is
rich in computing resources, allowing VNFs to be offloaded from
edge network [4]. Hence, combining edge with core network
forms an edge-core network, which provides greater flexibility
for latency optimization and resource utilization of SFCs. A
promising SFC use case in edge-core networks is the delivery of
Value-Added Services (VAS), such as HTTP header enrichment
in edge network to identify and charge subscribers, and Carrier
Grade NAT (CG-NAT) and NAT64 in core network for technical
reasons (e.g., traffic flows traverse different networks supporting

∗Corresponding author
Email address: tcuilin@jnu.edu.cn (Lin Cui)

distinct address families like IPv4/IPv6) [5]. However, provi-
sioning of low-latency services in edge-core networks is prone
to network congestion and compute resource contention caused
by network dynamics. Overcoming these issues requires SFC
scheduling mechanisms that can proactively adapt to network
conditions.

With regard to scheduling of SFCs and reducing latency of
network services in edge and core networks, some works focus
on SFC deployment to optimize network latency [6], deploy-
ment cost [7], and energy consumption [8, 9]. These works
employ static placement of SFCs based on the assumption that
network demand is known and resources are not oversubscribed.
This intrinsic shortcoming prevents them from dealing with dy-
namic network conditions efficiently due to their inability to
react to changing network demand and resource hotspots. VNF
replication can mitigate the problem with good reliability and
scalability [10, 11], but it is challenging to maintain a large
number of internal states across multiple servers and ensure
consistency when replicating stateful VNFs. In comparison,
VNF migration [12] is an effective way to deal with dynamics
because VNFs can be flexibly migrated to optimal servers while
reserving application states.

However, SFC migration in edge-core networks remains un-
explored and is challenging. There are works [4, 13] studying
migration of individual VNFs across edge and core networks, but
they do not consider the constraint of the orders of VNFs in an
SFC, which may result in violation of the constraint and increase
of end-to-end latency for users. SFC migration in either edge
network or cloud data center has been investigated [14, 15, 16].
However, these works cannot be directly applied to edge-core

Preprint submitted to Journal of Systems Architecture January 26, 2022

Active Antenna Unit

U
se

r
E

qu
ip

m
en

t

Edge Router

Arrival rate (kpps)

Service rate (kpps)

Packet queue

VNF migration

Internet

NFV server
Traffic flow

VNF 4 Link latency (ms)

Server G in Core

VO

Server D in Edge

VO

FW DPIVO

F

E

G

D

B

C

A

H

I

2

1

1

5
4 1

2

2

Edge Network
1-10 ms

Core Network
> 10 ms

FW
DPI

VO

VO

Server capacity

Migrated flow

4236738

Figure 1: A typical example of user requests of live video streaming service served by an SFC, i.e., firewall (FW), video optimizer (VO) and deep packet inspector
(DPI) sequentially: (i) the left part shows link latency is reduced from 12 ms (marked by the red arrows) to 10 ms (marked by the blue dashed arrows) after VNF
migration; (ii) the right part indicates VNF processing latency is optimized as VO is allocated more resources in core network than edge network.

networks due to two major challenges in edge-core networks
from the communication perspective [17]. (i) Compared to ei-
ther edge network or cloud data center, traffic patterns are more
complex in edge-core networks, e.g., flows can be transmitted
between UEs and the Internet, entering or leaving the edge and
core networks arbitrarily. (ii) Due to different underlying net-
work architectures in edge and core networks, the latency from
UEs to different parts of the edge-core networks varies greatly
(as shown in Fig. 1). These challenges increase the complexity
and difficulty for modeling flow latency and making optimal
decisions on SFC migration across edge-core networks. Fig. 1
demonstrates an example of users requesting live video stream-
ing service served by an SFC to illustrate the importance of SFC
migration in edge-core networks. Migrating VNFs to appropri-
ate NFV servers across edge-core networks can optimize link
latency and processing latency. User-generated video streams
are steered through an SFC consisting of: firewall (FW)→video
optimizer (VO)→deep packet inspector (DPI), and forwarded
to other users who subscribe live video services (marked by the
red arrows). Initial placement of VNFs is not optimal, leading
to longer latency. After the video optimizer is migrated from
edge network to core network, the SFC end-to-end latency is
reduced, including both link latency (the migrated flows marked
by the blue dashed arrows) and processing latency (processing
rate of video optimizer improves as more computing resources
are allocated).

In this paper, we investigate latency-aware SFCs migration
in edge-core networks. To address the above challenges, we first
model SFCs using open Jackson networks [18]. The open Jack-
son network well captures network characteristics in the aspect
of flow patterns in SFCs. Besides, the average latency of SFCs
in both edge and core networks is reduced by SFC migration
without violating service-level agreements (SLAs) compliance.
Two heuristic algorithms are proposed to solve the SFC migra-
tion problem efficiently. To the best of our knowledge, this is
the first paper that comprehensively considers SFC migration
based on the interplay of edge with core network. The main

contributions of this paper are summarized as follows:

• We apply open Jackson networks to model SFCs in edge-
core networks and formulate the Latency-aware Edge-
Core SFC Migration problem. The open Jackson network
is used to analyze latency of SFCs to minimize the waiting
time in VNF queues.

• Two novel algorithms, i.e., Profit-driven Heuristic Search
(PHS) and Average Utilization Based (AUB) for SFC
migration, are proposed to optimize average latency of all
deployed SFCs.

• Extensive evaluations are conducted to demonstrate ef-
fectiveness of both algorithms: PHS can migrate a small
number of VNFs (i.e., 6.7% migration rate) to optimize
more latency by nearly 19.5%. By allowing a bit more
VNF migrations, AUB can reduce average latency of SFCs
by up to 36.9% compared to the comparative method.

The remainder of this paper is structured as follows. In
Section 2, an overview of related works is given. In Section 3,
we formulate SFC migration problem and define an objective
function. Then, an analysis of minimizing average latency by
migration of VNFs will be given in detail. In Section 4, two
effective algorithms PHS and AUB are proposed in detail. Sec-
tion 5 presents our evaluation environment and the performance
of the proposed algorithms. In Section 6, a brief discussion on
current study and future works is provided, and then Section 7
concludes the paper.

2. Related Works

2.1. SFC Deployment

Many works focus on SFC deployment for the purposes of
resource, energy, and latency optimization. Li et al. [19] studied
placement of VNFs and resource optimization in edge comput-
ing enabled networks, and proposed a polynomial time heuristic

2

solution to solve the problem. By leveraging deep learning and
Software-Defined Networking (SDN), Zhang et al. [8] proposed
an intelligent architecture to solve the multi-domain SFC de-
ployment problem. Zeng et al. [9] designed a VNF placement
and routing algorithm based on a genetic algorithm and simplex
method to optimize energy consumption and Quality of Service
(QoS). The work [6] emphasizes latency-aware and reliable SFC
placement against VNF failures. They aimed to minimize total
deployment cost while mitigating high computational complex-
ity of the Integer Linear Programming (ILP) problem. Cui et al.
[20] studied NF placement in heterogeneous network environ-
ments with an objective to minimize network cost. Zhang et al.
[21] modeled VNF chains in data center networks by applying
open Jackson networks and formulated the VNF placement prob-
lem as bin-packing problem to improve resource utilization and
reduce latency. Harutyunyan et al. [22] aimed to minimize the
service provisioning cost and satisfy users’ data rate require-
ments through placement and scaling of VNFs in MEC and 5G
core network.

2.2. SFC Migration
VNF migration, such as cold/live migration and virtual ma-

chine/container migration, has been widely studied [13, 23].
Live migration of stateful VNFs, which consists of pre-copy,
post-copy, and hybrid schemes, etc., is the most common ap-
proach used in real world environments. Sarrigiannis et al. [4]
presented an MEC-enabled 5G architecture that efficiently han-
dles the placement and migration of network and application
VNFs across edge and core tiers. These VNFs are orchestrated
by an NFV Orchestrator (NFVO) with admission management
functionalities that manage NFs and resources on-the-fly. Zhang
et al. [13] applied Para-Virtualization QuickAssist Technology
(PV-QAT) to accelerate the live migration of VNFs which are
deployed in virtual machines.

There are some works studying SFC migration. Addad et al.
[14] introduced and evaluated diverse SFC migration patterns
regarding user mobility, server resources and application require-
ments. They aimed to achieve an objective of 1 ms latency for
the 5G network. Hawilo et al. [24] studied VNF migration and
re-instantiation to achieve minimal downtime and minimize SFC
delays. Chen et al. [25] proposed a deep reinforcement learning
framework called MSDF to address multiple SFC migrations.
Their work outperforms typical heuristic algorithms in the as-
pect of reducing network operation cost and balancing QoS of
users. To study user mobility, Zhao et al. [15] researched SFCs
remapping in cloud-fog computing environments by using the
minimum number of VNFs migration strategy and the two-step
migration strategy. They focused on minimization of reconfigu-
ration time and downtime. Similarly, Chen and Liao [16] tackled
the user mobility problem using SFC placement and migration
to maximize user satisfaction. Chemodanov et al. [26] studied
SFC composition and maintenance in geo-distributed edge/core
cloud infrastructures, for the purposes of provisioning of reli-
able latency-sensitive SFCs. They presented a metapath-based
SFC maintenance algorithm by allowing migration of part of the
service chain to maintain its services. Guo et al. [27] designed a
dynamic hierarchical SFC orchestration algorithm based on deep

Table 1: Notations
Network parameters Description

G = (V,E) Network as a graph.
V = {v1, v2, vi . . . , v|V|} All NFV servers in the network.
E = {e1, e2, e j . . . , e|E|} A set of paths between any two

servers.
Ci Capacity as {CPU,memory, I/O}

of server vi ∈ V.
Yi A list of VNFs residing on server

vi ∈ V.
W j Link latency of path e j ∈ E.
B j Bandwidth of path e j ∈ E.

VNF parameters Description
F = { f1, f2, fm, . . . , f|F|} A set of VNFs.

Rm Resources as {CPU,memory, I/O}
required for instantiation of VNF
fm ∈ F.

Am Actual resources allocated to VNF
fm ∈ F. It is required that Am ≥ Rm

for fm to operate normally.
SFC parameters Description

S = {s1, s2, sk, . . . , s|S|} A set of SFCs, each of which con-
tains a series of ordered VNFs.

Pk A path of SFC sk ∈ S.
ωk Maximum allowed end-to-end la-

tency for SFC sk ∈ S.
ξk Flow rate of traffic flows served by

SFC sk ∈ S.
Others Description
λ fm , µ fm Average arrival rate and service

rate related to VNF fm.
T fm Average response latency of each

packet in VNF fm.
bm

i, j Binary variable that equals 1 if fm
is migrated from server vi to v j.

Hm A subset of NFV servers to which
VNF fm can be migrated.

reinforcement learning to minimize network cost and improve
QoS in the edge cloud and core cloud.

Different from above works, this paper focuses on providing
low-latency SFCs in edge-core networks through migration of
VNFs by modeling SFCs with open Jackson networks.

3. Problem Model

In this section, deployment of SFCs in edge-core networks
is modeled using open Jackson networks. And we formulate
the Latency-aware Edge-Core SFC Migration problem with an
objective to minimize average latency of all SFCs. Table 1 lists
key notations that will be used in the following of the paper.

3.1. Edge-Core Networks and SFCs

MEC provides an ultra-low latency and high bandwidth com-
pute environment for service providers and customers. But

3

computational functionalities of MEC servers (e.g., deployed
at base stations and aggregation points [28]) are limited. Mean-
while, core network is considered to have abundant computing
resources through on-demand upscaling [4] while retaining low
latency compared to cloud data centers. Edge-core networks
combine the advantages of the two networks, as shown in Fig. 1.
However, traffic patterns for edge and core networks are differ-
ent. Enforced by SFCs, flows generated by UEs are first steered
to the radio access network (RAN), where MEC servers are
deployed. Some flows may be forwarded to core network (or
backbone), which is connected to RAN via backhaul links and
edge routers [29]. Based on policy requirements of services,
these traffic flows can be routed to the Internet or back to UEs.
Therefore, edge network not only needs to handle traffic flows
from UEs, but also to relay flows from core network to UEs.
These intrinsic characteristics of traffic patterns influence the
decisions of SFC scheduling between edge and core networks.

The edge-core networks are defined as a graph G = (V,E),
where V = VM ∪ VC refers to a set of NFV servers either
in edge or core network, and E = EM ∪ EC is a set of paths
among NFV servers. For each NFV server vi ∈ V, its computing
resource1 is denoted as capacity Ci. The latency for each path
e j ∈ E is denoted by W j, including both transmission delay
and propagation delay. The latency within either edge or core
network is usually low, as shown in Fig. 1, however, latency
from UEs to core network is higher than that from UEs to edge
network due to longer distance. Latency between two NFV
servers in edge network and core network can be measured by
network monitoring tools like sFlow2 and MTR3. Bandwidth of
e j is denoted by B j.

An NFV server can spawn several VNF instances by spin-
ning up one or more virtual machines (VMs) or containers. Yi

denotes a list of VNFs that are already instantiated in server vi.
For each VNF instance fm ∈ F, the amount of resources required
for instantiation is denoted by Rm. When traffic flows arrive at
server vi, they are served by corresponding VNFs immediately.
Average arrival rate of traffic flows to VNF fm (packet per sec-
ond, pps) is denoted by λ fm . Let µ fm be the average service rate
or throughput of fm. Usually, service rates of different VNFs
are non-deterministic, and they may vary to cater for various
requirements defined in SLAs. The service rate of each VNF
is determined by the amount of assigned computing resources,
i.e., VNFs with higher service rate are likely to consume more
computing resources [31]. Am denotes actual resources allocated
to VNF fm. Without loss of generality, computing resources
of a server are assumed to be evenly allocated among all VNF
instances that reside on the server.

To understand the relationship between service rate and allo-
cated resources, we conduct an experiment4 with three VNFs,

1Server resources are measured in units [30]. For example, one unit of
resource can be defined as 1 CPU core and 512 MB RAM.

2https://sflow.org
3https://www.bitwizard.nl/mtr/
4This experiment is conducted on a server with 4-core Intel Core i7-6700

CPU and 8GB memory. Each VNF is deployed in different namespaces, and
cgroups are used to control the amount of resources for each VNF.

0 10 20 30 40 50 60 70
Allocated CPU resources (%)

0

20000

40000

60000

80000

Se
rv

ic
e

ra
te

 o
f V

N
Fs

 (p
ps

)

Snort
Prads
Suricata

Figure 2: Impact of allocated CPU resources on packet processing rates of
different types of VNFs.

i.e., Snort5, Prads6 and Suricata7. Results in Fig. 2 show that
allocated CPU resources have different impacts on service rates
of the three VNFs. The differences can be summarized as Equa-
tion (1), where parameters k, b, c and d may vary with the types
of VNFs. k reflects the sensitivity of service rate of a VNF to
its allocated resources. d is the maximum effective resources
allocated to the VNF and c is the upper bound of service rate.

µ fm =

kAm + b, Am < d.
c, Am ≥ d.

(1)

The set of SFCs is defined as S. For each SFC sk ∈ S,
it consists of a sequence of connected VNFs Fk ⊆ F, which
performs an ordered action on the data stream. According to
IETF RFC 7665 [32], ingress and egress of SFC sk act as SFC
boundary nodes to handle traffic entering and leaving the SFC-
enabled domain respectively. The ingresses and the egresses
can be access points (APs) or switches [33]. When traffic flows
are steered through an SFC, they follow a specific path from
ingress to egress of the SFC. Pk denotes an SFC path of sk that
contains an ordered list of paths among NFV servers. Besides,
each SFC sk has maximum allowed end-to-end latency ωk and is
programmed to serve up to a certain number of traffic flows with
flow rate ξk. The probability that flows are steered from server
vi to v j is denoted by pi j. In practice, a VNF can be shared by
more than one SFCs, but migration of the shared VNFs may
interfere with the schedule decisions. Since this paper focuses on
scheduling under edge-core networks, for simplicity, we assume
that an independent VNF instance can only be assigned to each
SFC.

3.2. Modeling SFCs as Open Jackson Networks
In queuing networks, an open network describes how cus-

tomers arrive from an external source are served and then leave
the system. An open Jackson network [18] is a special class of
queuing networks considering several queues with one class of
customers.

We model VNFs as M/M/1 (Kendall’s notation) queues. Ac-
cording to the Burke’s Theorem [34], the departure process of

5https://www.snort.org/
6https://github.com/gamelinux/prads
7https://suricata-ids.org/

4

Flows arrive at NFV servers Flows served by SFCs

Split flow

Aggregated flow

Figure 3: Aggregated traffic flows arrive to different NFV servers under open
Jackson network: aggregated flows from the left part are corresponding to
multiple split flows from the right part.

traffic flows from the network will be Poisson if the system is
under equilibrium conditions. For M/M/1 type queues, it is as-
sumed that: (i) any external traffic flows from outside entering
the edge-core networks form a Poisson process [35] with an
arrival rate α > 0, service times at each VNF are exponentially
distributed; (ii) queuing discipline of each packet in VNF queues
follows a first-come, first-served (FCFS) rule; (iii) upon service
completion at server vi, a flow will either go to another server
v j with probability pi j or leave the edge-core networks with
probability pi0 = 1 −

∑|V|
j=1 pi j; (iv) the utilization of all VNFs is

less than one, as shown in Equation (2).

ρ fm =
λ fm

µ fm
< 1,∀ fm ∈ sk,∀sk ∈ S (2)

Each external traffic flow from outside of the edge-core net-
works is independently routed to VNF fm ∈ Yi with probability
p0i. The overall arrival rate to VNF fm is defined as λ fm in Equa-
tion (3), including both external arrivals (UEs to edge network,
between edge and core network) and internal transitions (inside
edge or core network). By solving these flow balance equations
(i.e., Equation (3)), we can obtain the effective arrival rate to
each VNF.

λ fm = αp0i +

|V|∑
j=1

λ fn p ji,∀ fm ∈ Yi,∀ fn ∈ Y j,∀vi ∈ V (3)

In edge-core networks, network packets likewise act as cus-
tomers to be served by a sequence of VNFs (i.e., SFC). The
chaining characteristic of an SFC implies that the arrival process
of flows at a VNF is related to the service process at the former
VNF, which is well captured by open Jackson network [21].
Fig. 3 shows the process of applying open Jackson networks to
model SFCs. The left part illustrates an overview of traffic flows
entering the queues under the open Jackson network. The right
part shows NFV servers from the left part in more detail: the
aggregated traffic flows are split and steered into corresponding
VNFs of SFCs.

Under open Jackson networks, the whole network is at equi-
librium, i.e., service rate µ fm is greater than arrival rate λ fm for all
VNFs. Otherwise, the system will become unstable and severe
packet loss happens because the buffer at each queue overflows

as time goes on. With this precondition, average response la-
tency of each packet in the queue of VNF fm is therefore given
by:

T fm =
1

µ fm − λ fm
(4)

3.3. Problem Formulation

To obtain the mean sojourn time spent by each packet in the
system, we first count the average number of packets in edge-
core networks. On the one hand, the average number of packets
ηm in the VNF fm can be calculated using Equation (5). Then,
the total average number of packets in all servers can be obtained
for both networks. On the other hand, the average number of
packets in path e j can be calculated by arrival rate and latency
of e j. Since all VNFs are at equilibrium, the average flow rate
leaving the VNF will be equal to the average flow rate entering
the VNF. For each SFC sk, arrival rates of all traffic flows served
by sk are aggregated into λsk . The latency of e j varies from
edge to core network. We break down the differences in the
latency W j for each path e j, i.e., Pk ∩ EM for edge network and
Pk ∩ EC for core network. The average number of packets LM

in edge network and LC in core network can be formulated by
Equation (6) and Equation (7), respectively.

ηm =
λ fm

µ fm − λ fm
(5)

LM =
∑

vi∈VM

∑
fm∈Yi

ηm +
∑
sk∈S

∑
e j∈Pk∩EM

λsk W j (6)

LC =
∑

vi∈VC

∑
fm∈Yi

ηm +
∑
sk∈S

∑
e j∈Pk∩EC

λsk W j (7)

As mentioned earlier, both edge and core networks render
great difference with respect to computational capabilities and
traffic directions. For a fine-grained analysis on SFC migration
in the context of edge-core networks, all deployed SFCs are
modeled using the open Jackson network separately. As shown
in Fig. 1, the total arrival rate of traffic flows from UEs to edge
network is denoted by ΛU . The total arrival rate from edge to
core network is denoted by ΛM . Flows in core network will
be either sent to the Internet or sent back to the UEs through
edge network. ΛC is the total arrival rate of traffic from core
to edge network. By applying the Little’s law [36] for open
Jackson networks, we can obtain the average time spent by
each packet from arrival until fully processed by SFCs in edge
and core networks, as shown in Equation (8) and Equation (9),
respectively.

TM =
LM

ΛU + ΛC
(8)

TC =
LC

ΛM
(9)

Hence, the average latency Γ incurred by all deployed SFCs
in edge-core networks is:

5

Before VNF migration After VNF migration

Figure 4: An example of SFC migration: three traffic flows are served by three
SFCs separately and two VNFs of the SFC (marked by the red dashed arrows)
are migrated to an idle server.

Γ = TM + TC (10)

Suppose an SFC, say sk, is successfully migrated, a new
SFC path needs to be reconstructed to ensure that SLAs of both
latency and bandwidth are satisfied. There are necessary factors
that affect path reconstruction: (i) the shortest path between any
two consecutive VNFs; (ii) fixed order of VNFs; (iii) available
bandwidth of the path. Fig. 4 illustrates that two VNFs of the
SFC are migrated to an idle server, for the purposes of path
optimization and improving resource utilization. The latency
reduction due to the migration is denoted by δ in Equation (11),
where Γ and Γ′ refer to average latency of all SFCs before and
after migration, respectively.

δ = Γ − Γ′ (11)

The goal is to maximize latency reduction through migration,
i.e., maximizing δ as shown in Equation (12a).

maximize δ (12a)

subject to δ > 0 (12b)∑
e j∈Pk

W j +
∑
fm∈sk

T fm ≤ ωk,∀sk ∈ S (12c)∑
fm∈Yi

Am ≤ Ci,∀vi ∈ V (12d)∑
sk∈S,e j∈Pk

ξk ≤ B j,∀e j ∈ E (12e)

∑
fm∈sk

bm
i, j ≥ 1,∃sk ∈ S,∀vi ∈ V,∀v j ∈ V (12f)

vi ∈ Hm,∀ fm ∈ Yi,∀vi ∈ V (12g)

In the above equations there are six constraints (12b)–(12g).
Constraint (12b) indicates that average latency of all SFCs
should be reduced after SFC migration. Network dynamics
is one of the major factors that affects the performance of SFCs.
Constraint (12b) does not guarantee whether the latency of a
single SFC will be reduced or not. Services provided by all
SFCs must meet the criteria of the predefined SLAs, i.e., not
exceeding the maximum allowed end-to-end latency. Based on
link latency W j and response latency mentioned in Equation (4),

FW LB NAT

LBDPI DPI

FW NAT

Before VNF migration After VNF migration

Source
server

Target
server

Total AllocatedResources (unit): Required

9 12 6 9 6

121818

16 1616 24 24

24 2448

48 48

4848

Figure 5: An example of VNF migration: allocated resources for FW, network
address translator (NAT) and LB increase while DPI is allocated less resources
after migration, which may result in changes to their service rates.

Constraint (12c) ensures that the latency of an SFC sk is re-
stricted to the maximum allowed end-to-end latency ωk due to
SLAs. Constraint (12d) is the capacity limitation of each NFV
server. Constraint (12e) refers to that the bandwidth of all paths
for SFCs cannot be exceeded. ξk denotes flow rate of traffic
flows served by sk. Constraint (12f) guarantees that at least one
VNFs must be migrated, where bm

i, j is a conditional expression
that represents whether fm is migrated from server vi to v j or
not.

bm
i, j =

1, if fm is migrated from vi to v j.

0, otherwise.
(13)

For VNFs to be migrated, some of them only work in a
specific area to provide services because of their functionalities.
For example, bastion hosts and intrusion prevention systems
(IPS) should be placed at the entrance of core network to secure
the networks. Constraint (12g) indicates that VNF fm is allowed
to be migrated to some specific servers. Hm is a subset of NFV
servers from V to which fm can be migrated.

The problem defined in (12a) can be easily proven to be NP-
hard through reducing the multiple knapsack problem (MKP),
whose decision version has already been proven to be strongly
NP-complete.

There is a prerequisite that the network capacity is large
enough for accommodating all SFCs, as SFCs are already sched-
uled in policies. Nevertheless, improper migration may lead to
rising cost (e.g., migration overhead [37]) and failure of satisfy-
ing partial stringent requirements of policies [38].

3.4. Discussions

3.4.1. Profit of migrating a VNF
If a VNF fm ∈ sk is migrated from source server vs to target

server vt, there are four obvious effects: (i) fm releases resources
from vs; (ii) vt needs to allocate resources to fm; (iii) link latency
of the SFC path Pk may change; (iv) other SFCs that traverse vs

and vt may be affected with respect to service rates of hosting
VNFs. The migration behavior changes not only the correspond-
ing link latency of path of sk, but also the response latency of
all related VNFs. Fig. 5 shows load balancer (LB) is migrated

6

Controllers

4. Restore
1. Update
routing

6. Release
resource

5. Replay
and switch

NFV server

2. Checkpoint

Container
Registry

Router

Container registry

State migration

Original flow
Migrated flow

LB LB

3. Copy

Figure 6: An overview of live migration of a stateful VNF: network traffic
re-routing and transfer of VNF states. Container registry distributes images
across NFV servers and controllers manage flow control.

and resources in source and target servers are reallocated accord-
ingly.

Let Ys and Yt be two lists of VNFs residing on both server
vs and server vt, respectively. Due to resources released for vs,
service rate of the rest VNFs in vs may increase. In the following
equation, Qs is the total reduced response latency of all VNFs
in source server vs.

Qs =
∑
f∈Ys

1
µ f − λ f

−
∑

f∈Ys\{ fm}

1
µ′f − λ f

(14)

Similarly, on the target server vt, response latency of VNFs
may increase. Qt denotes variance of latency for all VNFs on vt.

Qt =
∑
f∈Yt

1
µ f − λ f

−
∑

f∈Yt∪{ fm}

1
µ′f − λ f

(15)

Hence, the total profit of migrating the VNF fm, denoted as
Q, will be the sum of reduced response latency Qs, increased
response latency Qt and variance of link latency Ql after migra-
tion. In order to maximize the profit Q, we expect to reduce link
latency and response latency by collaboratively finding appro-
priate VNFs to be migrated and the target server vt.

Q = Qs + Qt + Ql (16)

3.4.2. Cost of migrating a VNF
VNF migrations will incur extra costs like resource usages

and temporary service interruptions. As the number of flows
the SFC processes increases, the number of states increases cor-
respondingly, which in turn increases migration time. Besides,
service downtime is one of the factors that impair SFC perfor-
mance. To mitigate such impacts, VNFs can be migrated via
live migration, which allows transferring only in-memory states
of VNFs (including copying, handling dirty memory pages, re-
suming, etc., to ensure consistency) rather than the whole VMs
to greatly reduce migration time. Fig. 6 shows a basic procedure
of migration of a stateful VNF through container live migra-
tion [23], including modification of routing for traffic flows and
migration of VNF states. Live migration of VMs or containers

can constrain the duration of service interruptions to a tolerable
level, e.g., in the level of sub-seconds, such that end users are
unaware of these changes. Since the focus of this paper is SFC
optimization in the edge-core networks, detailed implementa-
tions of live migration can be found in [13, 23, 39].

3.4.3. Impact of SFC positions on VNF migrations
Jointly combining edge with core network, there are three

possible categories of SFC positions: (i) SFC in edge network,
an example of which could be ultra-low latency video streaming;
(ii) SFC in core network, for instance, online storage service
where latency of accessing to the storage can be tolerant; and
(iii) hybrid, containing VNFs in both edge and core networks
(an example could be a smart surveillance system [4]). The
ratio among the three categories of SFC positions is mostly
decided by what kinds of and how many services are provided
to service customers. Different SFC positions complicate the
traffic patterns in edge-core networks. Regarding SFC positions,
VNF migration may happen within edge or core network, or
between them. In case of VNF migrations between edge and
core network, this causes a problem that traffic flows may travel
back and forth multiple times if VNF migrations are not properly
scheduled, which leads to higher latency.

4. Algorithm Design

In this section, we design two algorithms to solve the SFC
migration problem: Profit-driven Heuristic Search (PHS) and
Average Utilization Based (AUB) algorithms.

4.1. Profit-driven Heuristic Search Migration

A heuristic approach to reduce the average latency is pro-
posed in Algorithm 1. The main idea focuses on selection of
appropriate SFCs, VNFs and target servers for migration. First,
SFCs that contribute high latency and high resource utilization
are identified. Then, for each chosen SFC, victim VNFs and
target servers are determined to maximize the profit of migration.

Given a group of deployed SFCs in edge-core networks,
these SFCs are evaluated one by one using two performance
indicators: total link latency of the SFC path Pk and ratio of
amount of resources allocated to the SFC to total capacity of
servers where the SFC traverses. As shown in Equation (18), σk

is defined as an association of both indicators for an SFC, which
is used to estimate whether sk should be considered for further
VNF migration. Latency of all SFC paths are first calculated
in Equation (17). Then each value is rescaled in the range
from 0 to 1 using min-max normalization, i.e., the first part
of Equation (18). The second part of Equation (18) shows to
what extent does the SFC consume available resources along the
path: the value 1 means the SFC monopolizes resources of each
server. Zk is a list of NFV servers where VNFs of the SFC sk are
instantiated. The set of SFCs with above-average σk among all
SFCs will be further analyzed for VNFs migration.

W = {x | x =
∑

e j∈Pk
W j, sk ∈ S} (17)

7

σk =
Wk −Wmin

Wmax −Wmin
+

∑
fm∈sk

Am∑
vi∈Zk

Ci
,∀sk ∈ S (18)

To choose victim VNFs, it is necessary to analyze whether
impacts of VNFs on their original servers are major or not. Like
the selection of SFCs, the impact of a VNF is measured by
latency of paths connected by the VNF and ratio of required
resources Rm to allocated resources Am. In addition, the more the
number of VNFs in a server vi (i.e., |Yi|) is, the higher probabili-
ties more profit is gained when migrating a VNF out from that
server. This factor also contributes to the impacts of the VNF.
Therefore, a victim VNF fm in server vi is determined according
to τm in Equation (20), where Mi represents SFC paths the server
vi consecutively connects to. τm is a product of the number of
VNFs in Yi and sum of normalized latency and the ratio of Rm to
Am, which evaluates the impacts of VNF fm on server vi. VNFs
with above-average τm are candidates for migration.

W′ = {x | x =
∑

e j∈Mi
W j, fm ∈ sk} (19)

τm = |Yi| · (
W′

k −W′
min

W′
max −W′

min
+

Rm

Am
),∀ fm ∈ sk (20)

Once a VNF of an SFC is marked as victim, it will be mi-
grated to another server (i.e., target server), either in edge or
core network. The target server can be determined based on the
following ideas:

• The target server must have enough resources for initial-
izing a new instance of the migrated VNF. The newly
allocated resources should satisfy requirements of both
incoming VNF and existing VNFs on the target server.

• To reduce link latency as much as possible, the target
server should reside on the shortest path between prede-
cessor and successor of the victim VNF with best efforts.
Besides, the order of VNFs in an SFC needs to be consid-
ered to prevent traffic flows from traveling between edge
and core network back and forth multiple times.

• The target server should be low-utilized, i.e., the capac-
ity of the server is much greater than the sum of VNFs’
required resources. Low-utilized servers are likely to in-
stantiate more VNFs of different sizes.

The working illustration of Algorithm 1 is as follows. At
the beginning of SFC migration, a small set of SFCs is chosen
(Line 1) based on the results of Equation (18). For each chosen
SFC, victim VNFs are then evaluated by Equation (20) (Line 3).
Algorithm 1 picks the best immediate choice at each stage of
VNF migration: selection of target servers follows the standard
operating procedures mentioned above (Line 6). Each iteration
of VNF migration yields a positive profit that is no less than
the predefined threshold Qthreshold (Line 7∼10), which ensures
that each migration of VNF is beneficial. The result will finally
converge as the migration process continues. Afterwards, new
paths for migrated SFCs will be constructed (Line 13) and used
to compute objective value (Line 14) as defined in Equation (11).

Algorithm 1 Profit-driven Heuristic Search Migration
Input: G = (V,E), network; S, a set of SFCs; P, a set of paths

of SFCs; Qthreshold; δthreshold.
Output: Positions of migrated VNFs and a set of SFC paths.

1: S′ ← Choose SFCs from S by Equation (18)
2: for sk ∈ S′ do
3: F′ ←Mark victim VNFs of SFC sk by Equation (20)
4: for fm ∈ F′ do
5: vs ← Source server of VNF fm
6: vt ← arg maxvi∈Hm

Qt

7: Q← Compute profit according to Equation (16)
8: if Q ≥ Qthreshold then
9: Migrate fm from vs to vt ▷ VNF migration

10: end if
11: end for
12: end for
13: P′ ← Path construction for S
14: δ ← Compute objective value with (G,S, P, P′) according

to Equation (11)
15: if δ ≥ δthreshold then
16: return Positions of migrated VNFs and a set of SFC

paths
17: else
18: Undo all changes ▷Migration failed
19: end if

If the value is greater than or equal to δthreshold, all changes
are committed and a set of new paths will be returned (Line
15∼16). Otherwise, the algorithm does not perform any SFC
migration (Line 17∼18). δthreshold is used to avoid too frequent
SFC migrations, especially when considering network dynamics.

To evaluate time complexity for Algorithm 1, we analyze
the worst case of the algorithm: the shortest path needs to be
calculated when finding the target server for each victim VNF
(Line 6). It is known that time complexity to find the shortest
path with Dijkstra algorithm using priority queue is O((|V| +
|E|) · log |V|). Thus, the time complexity for Algorithm 1 is:
O(|S| · |F| · (|V| + |E|) · log |V|). Besides, Algorithm 1 uses extra
memory space to store intermediate values when determining
SFCs and victim VNFs, the space complexity for Algorithm 1
is: O(|S| · |F|).

4.2. Average Utilization Based Migration
The main focus of Algorithm 1 is to make VNF migration

decisions from the perspective of SFC. In this section, another
approach based on average utilization of servers is provided with
more flexibility.

There are two main observations when intending to reduce
average latency: (i) SFCs should be placed on the paths where
link latency is as optimal as possible; (ii) processing capacity of
VNFs can be improved to reduce response latency by allocating
more resources to those VNFs. Inspired by the second observa-
tion, all NFV servers in the whole network are divided into two
groups: under-utilized servers and over-utilized servers. Equa-
tion (21) evaluates all NFV servers by resource utilization. An
under-utilized server is a server where total required resources of

8

Algorithm 2 Average Utilization Based Migration
Input: G = (V,E), network; S, a set of SFCs; P, a set of paths

of SFCs; δthreshold.
Output: Positions of migrated VNFs and a set of SFC paths.

1: P′ ← ∅
2: V′ ← Choose over-utilized servers from V by Equation (21)
3: V′′ ← V \ V′ ▷ Under-utilized servers
4: for vs ∈ V′ do
5: F′ ← Get victim VNFs from vs by Equation (20)
6: for fm ∈ F′ do
7: vt ← arg maxvi∈V′′∩Hm

Qt

8: Migrate fm from vs to vt ▷ VNF migration
9: P′ ← Path construction for S

10: end for
11: end for
12: δ ← Compute objective value with (G,S, P, P′) according

to Equation (11)
13: if δ ≥ δthreshold then
14: return Positions of migrated VNFs and a set of SFC

paths
15: else
16: Undo all changes ▷Migration failed
17: end if

all VNFs occupy less than half of the capacity of the server, i.e.,
ϕi < 1/2. On the contrary, ϕi in over-utilized servers is greater
than 1/2. To reduce the average latency, VNFs can be migrated
from over-utilized servers to under-utilized ones on paths with
lower latency.

ϕi =

∑
fm∈Yi

Rm

Ci
,∀vi ∈ V (21)

The working illustration of Algorithm 2 is as follows. Both
under-utilized and over-utilized servers are first identified ac-
cording to Equation (21) (Line 2∼3). For each over-utilized
server, one or more VNFs are selected as victim VNFs based on
Equation (20) (Line 5). Afterwards, optimal servers are chosen
from under-utilized servers for these victim VNFs using policy
of choosing target servers aforementioned in Algorithm 1 (Line
7). It is remarkable that there is path construction after each
VNF migration (Line 8∼9). The rest of Algorithm 2 is to decide
whether to commit changes made by previous decisions and is
the same with that of Algorithm 1 (Line 12∼17).

Algorithm 2 is based on average utilization. We assume
that servers that host VNFs are over-utilized, then the worst
case is all VNFs are relocated (Line 7∼8) and a new shortest
path are constructed for each VNF (Line 9). Hence the time
complexity for this algorithm will be: O(|V|·|F|·(|V|+|E|)·log |V|).
Algorithm 2 focuses on finding out under-utilized and over-
utilized servers and victim VNFs, and then initializes them as
array lists, the space complexity for Algorithm 2 is: O(|V| · |F|).

5. Performance Evaluation

In this section, extensive simulations are conducted to evalu-
ate the performance of the proposed algorithms.

5.1. Experiment Setup

All codes of the proposed algorithms are written in Java. And
all simulations are conducted on a server with 8-core CPU Apple
M1 chip and 8GB unified memory. Each simulation consists of
a batch of 10,000 random runs with the same configuration of
network topology.

Network topology. Several network topologies are used
to construct the edge-core networks. BsonetEurope from the
Internet Topology Zoo [40] is used as one network topology.
Besides, random network topologies are created to simulate
different scales of the network, e.g., small, medium, and large.
The random network topology is similar to the graph depicted
in the Fig. 1, including one edge network and one core network.
Servers in edge and core networks have different amounts of
computing resources, where capacity scales from 10 to 30 units.
All servers are set up according to configurations defined in [21]:
one CPU core equals 150 units of resources and one unit of
resource can handle 64 bytes packets at 10 kpps. Link latency
(i.e., UE to edge network: 1-10 ms, UE to core network: 10-
15 ms) and bandwidth (sufficient) between any two connected
servers are set according to the actual situation as well.

VNFs & SFCs. A set of commonly-deployed VNFs (in-
cluding network address translator, load balancer, firewall, deep
packet inspector, etc.) are simulated. Each VNF has different
requirements of resources, which is also measured in the way
computing resources of servers are defined. There is a constraint
that total resources consumed by all deployed SFCs must not
exceed network capacity. Each SFC is assigned an ingress node
and an egress node in a stochastic manner. Random numbers
of VNFs are selected from the set and are chained together in a
specific order to form an SFC. SFCs with different numbers of
VNFs, i.e., lengths, are evaluated.

Traffic flows. Different numbers of traffic flows are assigned
to each SFC to simulate users requesting SFCs. Flow rate varies
from 1 kpps to 2 kpps per flow. Each SFC is capable of handling
5 to 10 traffic flows so as to assure the requirement on utilization
of each VNF, as shown in Equation (2).

Baseline algorithm. To evaluate the feasibility and perfor-
mance of two proposed algorithms, a state-of-the-art SFC mi-
gration algorithm Follow-Me Chain (FMC) [16] is implemented
from scratch. FMC solves the SFC embedding problem consid-
ering user mobility to maximize user satisfaction by utilizing a
range-based depth-first search (DFS) to select proper migration
paths. The SFC migration algorithm of FMC chooses nearby
servers with sufficient residual resources and evaluates paths
similarity with a Jaccard Similarity Coefficient. As a result, if
we assume the worst case is that all VNFs are migrated among
the Nmax highest ranking migrating candidates paths, then the
time complexity for FMC is therefore given by: O(|V| · |F| ·Nmax),
and the space complexity is: O(|V| · |F|) in our implementation.
Before SFC migration, all required SFCs need to be successfully
deployed in the network. A feasible algorithm for SFC place-
ment [41] is adopted to provide a uniform environment for SFC
migration. The main idea of the placement algorithm is: (i) two
adjacent matrices, i.e., physical network graph and the SFC re-
quest, are computed as the similarity matrix; (ii) given the server

9

Small Medium Large
Network scale

0

10

20

30

Av
er

ag
e

la
te

nc
y

(m
s)

Placement
FMC

PHS
AUB

GRB

Figure 7: Average latency under different network scales.

resource constraint, SFCs are mapped to the physical network
based on the Hungarian method. It can be easily extended and
modified to cater to the needs of our experiments and applied to
edge-core networks.

Gurobi optimizer. To further analyze the optimal solution to
the SFC migration problem, our optimization model is evaluated
using a mathematical optimization solver called Gurobi8 (GRB).
Gurobi uses the branch-and-cut algorithm to solve Mixed Integer
Program (MIP) models. Since Gurobi takes a very long time to
solve the objective function due to the large number of VNFs
in large-scale networks, it is necessary to set model attributes
and parameters like MIPGap and TimeLimit for performance
improvements. MIPGap indicates the relative MIP optimality
gap between an upper bound (incumbent) and a lower bound on
the optimal objective value. In our average latency minimization
model, the upper bound gives the objective of the best-known
feasible solution, while the lower bound is the best possible
objective. Gurobi will terminate the algorithm and may yield a
non-optimal solution if it exceeds TimeLimit.

5.2. Results and Analysis
Several metrics are used to evaluate the performance of these

algorithms, including migration rate, reduced average latency,
execution time and so forth. In all simulations, the maximum
resources consumed by every set of SFCs will not exceed the
capacity of chosen networks.

Average latency of SFCs. To compare performance of three
SFC migration algorithms under different network scales, Fig. 7
shows average latency of one placement algorithm, three mi-
gration algorithms and the optimization model solved by the
Gurobi solver. It is shown that the proposed algorithms effec-
tively optimize average latency of SFCs and AUB has the best
performance compared to the other two algorithms, reducing
average latency by up to 12.8 ms. Compared to FMC, AUB can
achieve up to 36.9% in average latency reduction. Interestingly,
FMC incurs extra average latency after migration in the small-
sized network. That is because the smaller-sized network offers
fewer appropriate paths but FMC must sacrifice existing optimal
paths to adapt to user mobility. GRB gives the optimal objective
value under all network scales after SFC migration, up to 80.2%
average latency reduction.

8Gurobi 9.5 release, https://www.gurobi.com

Fig. 8 gives a comparison about reduced average latency
among algorithms in the same network, where the length of
SFCs varies from 4 to 8. When the size of SFCs is relatively
small, network resources are abundant for these SFCs. Under
these circumstances, PHS and AUB behave little differently
in minimizing average latency (length of SFCs is 4). When
the length of SFCs increases, placement of SFCs results in
imbalance of server utilization, of which AUB tries to optimize.
Therefore, reduced average latency for AUB increases sharply
compared to the other two algorithms. In all cases, FMC can
only reduce little average latency, while GRB always has the best
performance in average latency reduction, even if either MIPGap
is set or GRB triggers early termination because TimeLimit is
reached. Fig. 8 shows for each bar of GRB, there is a gap
(i.e., the yellow area on top) between the objective value of the
current incumbent and the current objective bound. The optimal
objective value always falls into this range.

To find out what contributes to reduction of average latency
of SFCs, reduced average latency is further decomposed into
link latency and VNF processing latency, as shown in Fig. 9.
For the first three algorithms, link latency is the most significant
factor that can be optimized, which is achieved by finding the
shortest paths for migrated SFCs. Due to SFC latency constraints
defined in SLAs, every VNF is allocated enough resources to
function normally even though computing resources of a server
are evenly shared. Therefore, packet processing can be very fast
and VNF processing latency can be low compared to link latency.
However, AUB optimizes processing latency by nearly 1/3 of
reduced average latency. AUB aims to migrate VNFs from
over-utilized servers to under-utilized servers, which increases
overall VNF service rates. As a result, VNF processing latency is
reduced much more in contrast to the other two algorithms. GRB
optimizes more processing latency than the others. Nevertheless,
link latency reduction still contributes most to the overall end-
to-end latency optimization of the SFC.

Both PHS and AUB can optimize average latency of SFCs
and outperforms the comparative algorithm FMC. Fig. 10 shows
the normal cumulative distribution function (CDF) for FMC,
PHS, AUB and GRB. FMC has nearly 45.6% of migration that
cannot be optimized. AUB has higher probabilities to reduce
average latency by approximately 2 times than PHS does in
peak performance. AUB can achieve reduced average latency
by about 26.9 ms while PHS stops at most 22.0 ms. Overall,
GRB still has the best performance compared to the other three
algorithms.

Acceptance ratio & migration rate. Migration failure refers
to a state that no SFC is migrated after execution of the algo-
rithm, which is potentially caused by algorithm selection. This
can be reflected in the acceptance ratio. As Fig. 11 shows, FMC
always performs SFC migration blindly no matter what type of
networks, hence, 100% success rate of SFC migration. However,
the proposed algorithms make smarter choices about whether to
migrate SFCs based on calculated profits and objective values.
Compared to PHS, AUB tends to have a higher success rate
because the strict profit-based migration condition is relaxed. As
the network scales up, PHS and AUB have more opportunities
to optimize paths and choose target servers, therefore both have

10

4 5 6 7 8
SFC length

0

10

20

30

40

50

R
ed

uc
ed

 a
ve

ra
ge

 la
te

nc
y

(m
s)

FMC
PHS

AUB
GRB

Figure 8: Reduced average latency varying along
with SFC length. (The yellow area on top of GRB
bar is the relative MIP optimality gap.)

FMC PHS AUB GRB
Algorithm

0

5

10

15

20

R
ed

uc
ed

 a
ve

ra
ge

 la
te

nc
y

(m
s)

Link latency
VNF processing latency

Figure 9: Reduced average latency: link latency vs.
VNF processing latency (SFC length = 5).

20 0 20 40
Reduced average latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

 C
D

F

FMC
PHS

AUB
GRB

Figure 10: Normal CDF for reduced averaged la-
tency.

Small Medium Large
Network scale

60

70

80

90

100

Su
cc

es
s r

at
e

(%
)

FMC
PHS

AUB
GRB

Figure 11: Acceptance ratio under different network
scales.

Small Medium Large
Network scale

0

20

40

60

80

M
ig

ra
tio

n
ra

te
 (%

)

FMC
PHS

AUB
GRB

Figure 12: Migration rate upon successful SFC mi-
grations in different networks.

FMC PHS AUB GRB
Algorithm

0

25

50

75

100

M
ig

ra
tio

n
ra

te
 (%

)

Within edge
Edge to core

Core to edge
Within core

Figure 13: VNF migration within or between edge
and core networks.

higher acceptance ratio. GRB also has a 100% success rate of
SFC migration. This is because the initial SFC placement algo-
rithm does not achieve the optimal goal of minimizing average
latency, and GRB triggers VNF migration for each scenario.

Upon successful SFC migrations, migration rate is used to
evaluate how many VNFs are intentionally migrated per run
per algorithm. This metric is important because frequent VNF
migrations introduce service interruption and overhead, leading
to network resources wastage. Thus, fewer VNF migrations
are expected to achieve better performance, i.e., lower average
latency after migration. Fig. 12 shows the corresponding migra-
tion rate for each algorithm. Obviously, FMC migrates over 20%
VNFs, about 2.2 times more on average than that of AUB. PHS
chooses victim VNFs aggressively based on Equation (18) and
(20) and decides VNF migration following rigid rules: profit of
migrating a VNF is greater than the predefined threshold. Hence,
PHS performs less VNF migration by 6.7% than AUB does.
At this point, PHS optimizes latency by nearly 19.5%. Nev-
ertheless, both PHS and AUB migrate VNFs at an acceptable
rate. Fig. 12 also demonstrates that the overall migration rate
(up to 68.4%) for GRB is the highest among other algorithms,
which implies most VNFs are relocated for better performance.
However, this solution is not feasible in actual SFC migration,
but it helps make better decisions for planning SFC placement
through prescriptive analytics.

Furthermore, migration of VNFs among edge and core net-
works are also investigated. Fig. 13 provides the distribution of
migration in different locations. FMC performs most migrations

within core network and inclines to migrate VNFs from edge to
core network. This reflects that FMC has poor performance in
reducing average latency as end users must experience higher
service delay due to longer distance. PHS focuses on migration
within edge network but there are still VNFs being migrated
to core network. The reason is PHS tries to select resource-
abundant servers as target servers when making profit-based
choices. The distribution in the case of AUB is relatively even
because AUB treats VNFs equally and migrates them to nearby
suitable servers. Besides, about one quarter of migrated VNFs
take place in offloading from core to edge network, which boosts
the reduction of average latency of SFCs. GRB mainly migrates
VNFs between edge network and core network. This makes
sense as the optimal solution may be in this situation: GRB not
only optimizes link latency by offloading most VNFs from core
to edge network, but also optimizes VNF processing latency by
reasonably allocating resources, i.e., migrating VNFs from edge
to core network.

Algorithm efficiency. Table 2 shows execution time of all

Table 2: Average execution time (seconds)
Network scale FMC PHS AUB GRB

Small 0.213 0.073 0.420 5.373
Medium 0.592 0.221 0.809 127.235

Large 1.362 0.896 2.149 1.162e+04∗
∗ There exist situations where the result cannot be obtained within the

predefined TimeLimit (see Table 3).

11

Table 3: GRB optimization runtime (seconds)
SFC length Small Medium Large

4 0.092 8.282 177.735
5 0.435 35.846 377.126
6 4.006 40.873 1.246e+03
7 9.605 127.501 4.466e+04
8 12.728 423.674 -

algorithms upon successful migrations. In all simulations with
different network scales, the average execution time of PHS is
always the fastest (i.e., up to 2.9 times faster than FMC). The
execution of AUB is slightly slower since there are complex
operations such as full path reconstruction for every migrated
VNFs. Even though in the large-sized network, PHS and AUB
solves the SFC migration problem within seconds, proving high
efficiency of the algorithms. GRB is multiple orders of mag-
nitude slower than the others. To investigate deeper for GRB,
Table 3 shows GRB optimization runtime for SFC migration
with different network scales and SFC lengths. The attribute
MIPGap is set to 0.7 for the medium and large-sized networks.
When either the network scales up or the number of VNFs in-
creases, GRB takes longer to solve the optimization model. In
the case where SFCs of length 8 are deployed in the large-sized
network, GRB fails to achieve an effective result as it exceeds
the predefined TimeLimit. Apparently, GRB offers optimal solu-
tions to reduce average latency of SFCs, but it must trade time
for optimality.

6. Future Works

This paper mainly focuses on SFC migration in the context
of edge-core networks such that average latency of all SFCs is
optimized. To adapt to network dynamics, both PHS and AUB
algorithms can perform periodic checks of the possibility of
SFC migration. However, there are several issues that need to
be considered for future works:

Shareable VNFs. In practice, a single VNF instance can
be allowed to be shared among multiple SFCs. Reusing VNFs
can not only maximize resource utilization but also make man-
agement of global VNF states easier. Nevertheless, migrating
a shareable VNF for one SFC will be a hazard as it potentially
violates consistency of other SFCs.

Multipath for SFCs. Under the circumstances that ser-
vice requests spike during a particular period, network service
providers may schedule new SFCs to satisfy incoming requests
by scaling up or scaling out VNF instances. Additionally, traffic
flows may be re-routed for the purposes of load balance and
increasing availability. Therefore, an SFC can have multiple
paths regardless of ingress and egress.

Inconsistency with flow changes. Some types of VNFs may
involve activities affecting rate of flows such as rate control,
traffic modification, etc. This would introduce great challenges
when applying the open Jackson network model and more issues
remain to be explored further.

7. Conclusions

In this paper, we, for the first time, applied open Jackson
networks to model SFCs and schedule migration of SFCs in
edge-core networks. The schedule of SFCs aims to optimize
average latency of all deployed SFCs as well as reasonably fulfill
all requirements that are predefined in policies according to the
SLAs. The proposed algorithms Profit-driven Heuristic Search
and Average Utilization Based migration efficiently solved the
Latency-aware Edge-Core SFC Migration problem. The simu-
lations mainly focused on evaluating reduced average latency,
migration rate and algorithm efficiency among all algorithms.
The results showed that both schemes are feasible: PHS opti-
mizes average latency of all deployed SFCs by nearly 19.5%
with 6.7% migration rate, while AUB can reduce average la-
tency by up to 36.9%, which outperforms the state-of-the-art
algorithm.

Acknowledgments

This work has been partially supported by National Natu-
ral Science Foundation of China (NSFC) No. 62172189 and
61772235; Natural Science Foundation of Guangdong Province
No. 2020A1515010771; Science and Technology Program of
Guangzhou No. 202002030372; The UK Engineering and Phys-
ical Sciences Research Council (EPSRC) grants EP/P004407/2
and EP/P004024/1, and InnovateUK grant 106199-47198.

References

[1] R. Gupta, D. Reebadiya, S. Tanwar, 6G-enabled edge intelligence for
ultra-reliable low latency applications: Vision and mission, Computer
Standards & Interfaces 77 (2021) 103521.

[2] I. Alam, K. Sharif, F. Li, Z. Latif, M. Karim, S. Biswas, B. Nour, Y. Wang,
A survey of network virtualization techniques for Internet of Things using
SDN and NFV, ACM Computing Surveys (CSUR) 53 (2020) 1–40.

[3] I. Sarrigiannis, K. Ramantas, E. Kartsakli, P.-V. Mekikis, A. Antonopoulos,
C. Verikoukis, Online VNF lifecycle management in an MEC-enabled 5G
IoT architecture, IEEE Internet of Things Journal 7 (2019) 4183–4194.

[4] I. Sarrigiannis, E. Kartsakli, K. Ramantas, A. Antonopoulos, C. Verik-
oukis, Application and network VNF migration in a MEC-enabled 5G
architecture, in: IEEE 23rd International Workshop on Computer Aided
Modeling and Design of Communication Links and Networks (CAMAD),
IEEE, 2018, pp. 1–6.

[5] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, J. Uttaro, Service Func-
tion Chaining Use Cases in Mobile Networks, Internet-Draft draft-ietf-
sfc-use-case-mobility-09, Internet Engineering Task Force, 2019. URL:
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-

use-case-mobility-09, work in Progress.
[6] P. K. Thiruvasagam, A. Chakraborty, A. Mathew, C. S. R. Murthy, Reliable

placement of service function chains and virtual monitoring functions with
minimal cost in softwarized 5G networks, IEEE Transactions on Network
and Service Management (2021).

[7] D. Zhao, J. Ren, R. Lin, S. Xu, V. Chang, On orchestrating service function
chains in 5G mobile network, IEEE Access 7 (2019) 39402–39416.

[8] C. Zhang, X. Wang, A. Dong, Y. Zhao, F. Li, M. Huang, The intelligent
multi-domain service function chain deployment: Architecture, challenges
and solutions, International Journal of Communication Systems 34 (2021)
e4665.

[9] Y. Zeng, Z. Shi, Z. Wu, VNF placement and routing algorithm for energy
saving and QoS guarantee, in: Proceedings of the 9th International Con-
ference on Computer Engineering and Networks (CENet), Springer, 2021,
pp. 911–919.

12

[10] N. Kiran, X. Liu, S. Wang, C. Yin, VNF placement and resource allocation
in SDN/NFV-enabled MEC networks, in: IEEE Wireless Communications
and Networking Conference Workshops (WCNCW), IEEE, 2020, pp. 1–6.

[11] Y. Alahmad, A. Agarwal, VNF placement strategy for availability and reli-
ability of network services in NFV, in: IEEE 6th International Conference
on Software Defined Systems (SDS), IEEE, 2019, pp. 284–289.

[12] B. K. Umrao, D. K. Yadav, Algorithms for functionalities of virtual
network: A survey, The Journal of Supercomputing (2021) 1–72.

[13] J. Zhang, L. Li, D. Wang, Optimizing VNF live migration via para-
virtualization driver and QuickAssist technology, in: IEEE International
Conference on Communications (ICC), IEEE, 2017, pp. 1–6.

[14] R. A. Addad, D. L. C. Dutra, M. Bagaa, T. Taleb, H. Flinck, Towards
studying service function chain migration patterns in 5G networks and
beyond, in: IEEE Global Communications Conference (GLOBECOM),
IEEE, 2019, pp. 1–6.

[15] D. Zhao, G. Sun, D. Liao, S. Xu, V. Chang, Mobile-aware service function
chain migration in cloud–fog computing, Future Generation Computer
Systems 96 (2019) 591–604.

[16] Y.-T. Chen, W. Liao, Mobility-aware service function chaining in 5G
wireless networks with mobile edge computing, in: IEEE International
Conference on Communications (ICC), IEEE, 2019, pp. 1–6.

[17] Y. Mao, C. You, J. Zhang, K. Huang, K. B. Letaief, A survey on mobile
edge computing: The communication perspective, IEEE Communications
Surveys & Tutorials 19 (2017) 2322–2358.

[18] J. R. Jackson, Networks of waiting lines, Operations research 5 (1957)
518–521.

[19] D. Li, P. Hong, K. Xue, J. Pei, Virtual network function placement and
resource optimization in NFV and edge computing enabled networks,
Computer Networks 152 (2019) 12–24.

[20] L. Cui, F. P. Tso, S. Guo, W. Jia, K. Wei, W. Zhao, Enabling heterogeneous
network function chaining, IEEE Transactions on Parallel and Distributed
Systems 30 (2018) 842–854.

[21] Q. Zhang, Y. Xiao, F. Liu, J. C. Lui, J. Guo, T. Wang, Joint optimization of
chain placement and request scheduling for network function virtualization,
in: IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), IEEE, 2017, pp. 731–741.

[22] D. Harutyunyan, R. Behravesh, N. Slamnik-Kriještorac, Cost-efficient
placement and scaling of 5G core network and MEC-enabled application
VNFs, in: IFIP/IEEE International Symposium on Integrated Network
Management (IM), IEEE, 2021, pp. 241–249.

[23] K. Govindaraj, A. Artemenko, Container live migration for latency critical
industrial applications on edge computing, in: IEEE 23rd International
Conference on Emerging Technologies and Factory Automation (ETFA),
volume 1, IEEE, 2018, pp. 83–90.

[24] H. Hawilo, M. Jammal, A. Shami, Orchestrating network function virtual-
ization platform: Migration or re-instantiation?, in: IEEE 6th International
Conference on Cloud Networking (CloudNet), IEEE, 2017, pp. 1–6.

[25] R. Chen, H. Lu, Y. Lu, J. Liu, MSDF: A deep reinforcement learning
framework for service function chain migration, in: IEEE Wireless Com-
munications and Networking Conference (WCNC), IEEE, 2020, pp. 1–6.

[26] D. Chemodanov, P. Calyam, F. Esposito, R. McGarvey, K. Palaniappan,
A. Pescapé, A near optimal reliable orchestration approach for geo-
distributed latency-sensitive SFCs, IEEE Transactions on Network Science
and Engineering 7 (2020) 2730–2745.

[27] S. Guo, Y. Dai, S. Xu, X. Qiu, F. Qi, Trusted cloud-edge network resource
management: DRL-driven service function chain orchestration for IoT,
IEEE Internet of Things Journal 7 (2019) 6010–6022.

[28] S. Kekki, W. Featherstone, Y. Fang, P. Kuure, A. Li, A. Ranjan,
D. Purkayastha, F. Jiangping, D. Frydman, G. Verin, et al., MEC in
5G networks, ETSI White Paper 28 (2018) 1–28.

[29] R. Bassoli, F. Granelli, S. T. Arzo, M. Di Renzo, Toward 5G cloud radio
access network: An energy and latency perspective, Transactions on
Emerging Telecommunications Technologies 32 (2021) e3669.

[30] J. Kong, I. Kim, X. Wang, Q. Zhang, H. C. Cankaya, W. Xie, T. Ikeuchi,
J. P. Jue, Guaranteed-availability network function virtualization with
network protection and VNF replication, in: IEEE Global Communications
Conference (GLOBECOM), IEEE, 2017, pp. 1–6.

[31] S. Agarwal, F. Malandrino, C.-F. Chiasserini, S. De, Joint VNF place-
ment and CPU allocation in 5G, in: IEEE Conference on Computer
Communications (INFOCOM), IEEE, 2018, pp. 1943–1951.

[32] J. Halpern, C. Pignataro, Service function chaining (SFC) architecture,

RFC 7665, RFC Editor, 2015.
[33] O. Soualah, M. Mechtri, C. Ghribi, D. Zeghlache, An efficient algorithm

for virtual network function placement and chaining, in: IEEE 14th
Consumer Communications & Networking Conference (CCNC), IEEE,
2017, pp. 647–652.

[34] P. J. Burke, The output of a queuing system, Operations research 4 (1956)
699–704.

[35] B. Melamed, Characterizations of Poisson traffic streams in Jackson
queueing networks, Advances in Applied probability (1979) 422–438.

[36] J. D. Little, S. C. Graves, Little’s law, in: Building intuition, Springer,
2008, pp. 81–100.

[37] L. Tang, X. He, P. Zhao, G. Zhao, Y. Zhou, Q. Chen, Virtual network
function migration based on dynamic resource requirements prediction,
IEEE Access 7 (2019) 112348–112362.

[38] T. He, A. N. Toosi, R. Buyya, SLA-aware multiple migration planning and
scheduling in SDN-NFV-enabled clouds, Journal of Systems and Software
(2021) 110943.

[39] T. V. Doan, G. T. Nguyen, H. Salah, S. Pandi, M. Jarschel, R. Pries, F. H.
Fitzek, Containers vs virtual machines: Choosing the right virtualization
technology for mobile edge cloud, in: IEEE 2nd 5G World Forum (5GWF),
IEEE, 2019, pp. 46–52.

[40] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, M. Roughan, The
internet topology zoo, IEEE Journal on Selected Areas in Communications
29 (2011) 1765–1775.

[41] M. Wang, B. Cheng, W. Feng, J. Chen, An efficient service function
chain placement algorithm in a MEC-NFV environment, in: IEEE Global
Communications Conference (GLOBECOM), IEEE, 2019, pp. 1–6.

13

