Loughborough University
Browse
- No file added yet -

Machine learning force fields based on local parametrization of dispersion interactions: Application to the phase diagram of C60

Download (9.31 MB)
journal contribution
posted on 2021-10-08, 08:10 authored by Heikki Muhli, Xi Chen, Albert P Bartók, Patricia Hernández-León, Gábor Csányi, Tapio Ala-NissilaTapio Ala-Nissila, Miguel A Caro
We present a comprehensive methodology to enable the addition of van der Waals (vdW) corrections to machine learning (ML) atomistic force fields. Using a Gaussian approximation potential (GAP) [Bartók et al., Phys. Rev. Lett. 104, 136403 (2010)10.1103/PhysRevLett.104.136403] as a baseline, we accurately machine learn a local model of atomic polarizabilities based on Hirshfeld volume partitioning of the charge density [Tkatchenko and Scheffler, Phys. Rev. Lett. 102, 073005 (2009)10.1103/PhysRevLett.102.073005]. These environment-dependent polarizabilities are then used to parametrize a screened London-dispersion approximation to the vdW interactions. Our ML vdW model only needs to learn the charge density partitioning implicitly by learning the reference Hirshfeld volumes from density functional theory (DFT). In practice, we can predict accurate Hirshfeld volumes from the knowledge of the local atomic environment (atomic positions) alone, making the model highly computationally efficient. For additional efficiency, our ML model of atomic polarizabilities reuses the same many-body atomic descriptors used for the underlying GAP learning of bonded interatomic interactions. We also show how the method enables straightforward computation of gradients of the observables, even when these remain challenging for the reference method (e.g., calculating gradients of the Hirshfeld volumes in DFT). Finally, we demonstrate the approach by studying the phase diagram of C60, where vdW effects are important. The need for a highly accurate vdW-inclusive reactive force field is highlighted by modeling the decomposition of the C60 molecules taking place at high pressures and temperatures.

Funding

Academy of Finland, under Projects No. 310574, No. 330488, and No. 329483 (M.A.C.), 321713 (M.A.C., P.H.-L., and H.M.), No. 308647 (X.C.), No. 314298 (X.C. and H.M.), and the QTF Center of Excellence program Grant No. 312298 (T.A.-N.)

Seed funding grant from the Aalto University Materials Platform

History

School

  • Science

Department

  • Mathematical Sciences

Published in

Physical Review B

Volume

104

Issue

5

Publisher

American Physical Society (APS)

Version

  • AM (Accepted Manuscript)

Rights holder

© American Physical Society

Publisher statement

This paper was accepted for publication in the journal Physical Review B and the definitive published version is available at https://doi.org/10.1103/physrevb.104.054106.

Acceptance date

2021-07-15

Publication date

2021-08-06

Copyright date

2021

ISSN

2469-9950

eISSN

2469-9969

Language

  • en

Depositor

Prof Tapio Ala-Nissila. Deposit date: 7 October 2021

Article number

054106

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC