Loughborough University
Browse

Macroplastic surface characteristics change during wind abrasion

Download (2.32 MB)
journal contribution
posted on 2025-06-25, 10:50 authored by Isabelle Finlay, Joanna BullardJoanna Bullard, Lucrecia Alvarez BarrantesLucrecia Alvarez Barrantes, Sam DavisSam Davis

Mechanical abrasion is an important wind driven process which can degrade plastic litter on sandy beaches, desert environments and in agricultural settings. Wind-driven particle impacts can cause surface roughening and chemical changes and eventually complete fragmentation in high stress environments. Aeolian abrasion has been considered in the context of microplastics (< 5 mm) which can be easily mobilised by wind. However, macroplastic (> 5 mm) abrasion has primarily been confined to engineering studies using high air velocities (> 25 m s−1) and large abraders (> 6 mm) which generate greater impact forces than observed in the natural environment. Using laboratory abrasion experiments, we demonstrate that the surface microtextures and surface chemistry of three different types of plastic are substantially altered during the processes of aeolian abrasion at impact particle velocities of 0.6 m s−1. After ten days of continuous abrasion with four different erodents the macroplastic surfaces developed textures resulting from micro-cutting, denting, flaking, micro-pitting and surface flattening. The prevalence of each surface texture was dependent upon the angularity of the erodent and the type of plastic. In all cases, polymer surface chemical compositions became more complex due to embedding of shattered abrasive and the replacment of carbon with oxygen and silica.

Funding

Microplastic entrainment, transport and fragmentation in atmospheric boundary-layer flows

Natural Environment Research Council

Find out more...

History

School

  • Social Sciences and Humanities

Published in

Scientific Reports

Volume

15

Issue

1

Publisher

Springer Science and Business Media LLC

Version

  • VoR (Version of Record)

Rights holder

© The Author(s)

Publisher statement

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Acceptance date

2025-05-15

Publication date

2025-05-21

Copyright date

2025

eISSN

2045-2322

Language

  • en

Depositor

Prof Joanna Bullard. Deposit date: 3 June 2025

Article number

17630

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC