posted on 2011-01-05, 14:22authored byPratik P. Shukla, Jonathan Lawrence
The thermal effects of fibre laser surface treatment on a ZrO2 engineering ceramic
were studied using a computational finite-element model (FEM). Temperature increases on the
surfaceandthe bulk of theZrO2 during the fibre laser processingwere measured usinganinfra-red
thermometer and specifically located thermocouples. The results showed an error of 5 per cent
with the surface and 18 per cent within the bulk of the ZrO2 when comparing the experimental
readings with those of the FEM. The FEM revealed a relationship between the traverse speed,
power density, time, depth, and the temperature during various stages of the fibre laser surface
treatment of the ZrO2. By utilizing data obtained from a thermogravimetry-differential scanning
calorimetry (TG-DSC), the FEM predictions of the temperature distribution were used to map
phase transformations and significant events occurring during the fibre laser surface treatment
of the ZrO2. The mapping revealed that the fibre laser surface treatment generally resulted in a
phase transformation of the ZrO2 at various temperatures changes as further shown in the article.
History
School
Mechanical, Electrical and Manufacturing Engineering
Citation
SHUKLA, P.P. and LAWRENCE, J., 2011. Mathematical modelling of the fibre laser surface processing of a zirconia engineering ceramic by means of three-dimensional finite-element analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 225 (4), pp. 949-964.