Loughborough University
Browse

Measurement of black carbon emissions from multiple engine and source types using laser-induced incandescence: Sensitivity to laser fluence

Download (3.38 MB)
journal contribution
posted on 2021-12-16, 11:57 authored by Ruoyang YuanRuoyang Yuan, Prem Lobo, Greg J. Smallwood, Mark P. Johnson, Matthew C. Parker, Daniel ButcherDaniel Butcher, Adrian SpencerAdrian Spencer
A new regulatory standard for non-volatile particulate matter (nvPM) mass concentration emissions from aircraft engines has been adopted by the International Civil Aviation Organisation. One of the instruments used for the regulatory nvPM mass emissions measurements in aircraft engine certification tests is the Artium Technologies LII 300, which is based on laser-induced incandescence. The LII 300 has been shown in some cases to demonstrate a variation in response to the type of black carbon particle measured. Hence it is important to identify a suitable black carbon emission source for instrument calibration. In this study, the relationship between the nvPM emissions produced by different engine sources and the response of the LII 300 instrument utilising auto-compensating laser-induced incandescence (AC-LII) method was investigated. Six different sources were used, including a turboshaft helicopter engine, a diesel generator, an intermediate pressure test rig of a single sector combustor, an auxiliary power unit gas turbine engine, a medium-sized diesel engine, and a downsized turbocharged direct injection gasoline engine. Optimum LII 300 laser fluence levels were determined for each source and operating condition evaluated. It was found that an optimised laser fluence can be valid for real-time measurements from a variety of sources, where the mass concentration was independent of laser fluence levels covering the typical operating ranges for the various sources. However, it is important to perform laser fluence sweeps to determine the optimum fluence range, as differences were observed in the laser fluence required, between sources and fuels. We discuss the measurement merits, variability, and best practices in the real-time quantification of nvPM mass concentration using the LII 300 instrument, and compare that with other diagnostic techniques, namely absorption–based methods such as photoacoustic spectroscopy using a photoacoustic extinctiometer (PAX) and a Micro Soot Sensor (MSS), and thermal-optical analysis (TOA). Particle size distributions were also measured using a scanning mobility particle sizer (SMPS). Overall, the LII 300 provides robust and consistent results when compared with the other diagnostic techniques across multiple engine sources and fuels. The results https://doi.org/10.5194/amt-2021-209 Preprint. from this study will inform the development of updated calibration protocols to ensure repeatable and reproducible measurements of nvPM mass emissions from aircraft engines using the LII 300.

Funding

Transport Canada

Rolls-Royce

Fundamental study of biofuel combustion: flame stabilisation and emissions using advanced optical diagnostics

Engineering and Physical Sciences Research Council

Find out more...

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

Atmospheric Measurement Techniques

Volume

15

Issue

2

Pages

241-259

Publisher

Copernicus Publications

Version

  • VoR (Version of Record)

Rights holder

© Crown

Publisher statement

This is an Open Access Article. It is published by Copernicus under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/

Acceptance date

2021-11-22

Publication date

2022-01-19

Copyright date

2022

ISSN

1867-1381

eISSN

1867-8548

Language

  • en

Depositor

Prof Adrian Spencer. Deposit date: 15 December 2021

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC