Membrane Emulsification was used to encapsulate yeast cells and form microparticles. W/O emulsions were produced using a Dispersion Cell; the aqueous phase consisted of gelatin/chitosan, or pure gelatin solution, containing yeast cells, the continuous phase was 2 wt% of SPAN 80 in kerosene. Varying the dispersed phase flux (from 70 to 350 L h- m-2) and the shear stress (from 17 to 1 Pa) applied on the membrane surface droplet sizes of between 60 and 340 µm were produced, with a coefficient of variation of 17% under the best operating conditions. The liquid drops were loaded with increasing amount of yeast (3.14×107 to 3.14×108 cells/mL). The stability and uniformity of the emulsions was independent of the cell concentration. PTFE coated hydrophobic membrane produced smaller W/O drops compared to FAS coated membranes. The liquid polymeric droplets were solidified in solid particles using thermal gelation and/or ionic crosslinking, obtaining yeast encapsulated particles sized ~100 µm. The pH sensitive polymer, Eudragit S100, was used as a coating to create gastro resistant particles suitable for intestinal-colonic targeted release. Viability of the released yeast cells was demonstrated using fluorescence probes and checking cell glucose metabolism with time.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
Journal of Membrane Science
Volume
524
Pages
377-388
Citation
MORELLI, S., HOLDICH, R. and DRAGOSAVAC, M., 2017. Microparticles for cell encapsulation and colonic delivery produced by membrane emulsification. Journal of Membrane Science, 524, pp.377-388.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Acceptance date
2016-11-16
Publication date
2016-11-24
Copyright date
2017
Notes
This paper was accepted for publication in the journal Journal of Membrane Science and the definitive published version is available at http://dx.doi.org/10.1016/j.memsci.2016.11.058.