posted on 2013-12-11, 11:22authored byYuan Wang, Houzheng Wu
We have used TEM to study the microstructure of friction surface of carbon fibre/carbon-silicon carbide composites brake discs after multi braking stop by using organic pads. A friction surface layer was developed consistently on the top of Si regions of the composites, but inconsistently on that of SiC and C. Inside the layer, amorphous silicon/silicon oxides appeared extensively with various non-metallic and metallic crystallites dispersed inside with sizes ranging from a few nanometers to several microns. A coherent interface between the friction layer and the composite surface was established under the braking conditions, whilst its sustainability varied notably in SiC and C regions. Microcracking near the friction surface appeared in SiC and C /C regions largely due to the extensive ductile deformation of SiC and weak interfaces between C and C . Material joining mechanisms were discussed to enlighten the friction transfer layer development on the surface of the composite discs.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Materials
Citation
WANG, Y. and WU, H., 2012. Microstructure of friction surface developed on carbon fibre reinforced carbon-silicon carbide (Cf/C-SiC). Journal of the European Ceramic Society, 32 (12), pp. 3509 - 3519.