Kasper et al. J Cell Physiol Submitted PDF.pdf (796.56 kB)
Download fileMimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation
journal contribution
posted on 2017-02-24, 14:06 authored by Andreas M. Kasper, Daniel C. Turner, Neil MartinNeil Martin, Adam SharplesBioengineering of skeletal muscle in-vitro in order to produce highly aligned myofibres in relevant three dimensional (3D) matrices have allowed scientists to model the in-vivo skeletal muscle niche. This review discusses essential experimental considerations for developing bioengineered muscle in order to investigate exercise mimicking stimuli. We identify current knowledge in the use of electrical stimulation and co-culture with motor neurons to enhance skeletal muscle maturation and contractile function in bioengineered systems in-vitro. Importantly, we provide a current opinion on the use of acute and chronic exercise mimicking stimuli (electrical stimulation and mechanical overload) and the subsequent mechanisms underlying physiological adaptation in 3D bioengineered muscle. We also identify that future studies using the latest bioreactor technology, providing simultaneous electrical and mechanical loading and flow perfusion in-vitro, may provide the basis for advancing knowledge in the future. We also envisage, that more studies using genetic,
pharmacological and hormonal modifications applied in human 3D bioengineered skeletal muscle may allow for an enhanced discovery of the in-depth mechanisms underlying the response to exercise in relevant human testing systems. Finally, 3D bioengineered skeletal muscle may provide
an opportunity to be used as a pre-clinical in-vitro test-bed to investigate the mechanisms underlying catabolic disease, whilst modelling disease itself via the use of cells derived from human patients without exposing animals or humans (in phase I trials) to the side effects of potential therapies.
Funding
Authors would like to thank the Rugby Football Union, UK and the Society for Endocrinology for funding and supporting this work.
History
School
- Sport, Exercise and Health Sciences
Published in
Journal of Cellular PhysiologyVolume
233Issue
3Pages
1985–1998Citation
KASPER, A.M. ... et al, 2017. Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation. Journal of Cellular Physiology, 233 (3), pp. 1985–1998.Publisher
© WileyVersion
- AM (Accepted Manuscript)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/Acceptance date
2017-02-01Publication date
2017-02-03Copyright date
2018Notes
This is the peer reviewed version of the following article: KASPER, A.M. ... et al, 2017. Mimicking exercise in three-dimensional bioengineered skeletal muscle to investigate cellular and molecular mechanisms of physiological adaptation. Journal of Cellular Physiology, 233 (3), pp. 1985–1998, which has been published in final form at http://dx.doi.org/10.1002/jcp.25840. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.ISSN
0021-9541eISSN
1097-4652Publisher version
Language
- en