We investigate a minimal architecture for quantum reservoir computing based on Hamiltonian encoding, in which input data are injected via modulation of system parameters rather than state preparation. This approach circumvents many of the experimental overheads typically associated with quantum machine learning, enabling computation without feedback, memory, or state tomography. We demonstrate that such a minimal quantum reservoir, despite lacking intrinsic memory, can perform nonlinear regression and prediction tasks when augmented with post-processing delay embeddings. Our results provide a conceptually and practically streamlined framework for quantum information processing, offering a clear baseline for future implementations on near-term quantum hardware.<p></p>
Funding
AI-powered micro-comb lasers: a new approach to transfer portable atomic clock accuracy in integrated photonics : EP/W028344/1
Quantum reservoir computing for efficient signal processing
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).