posted on 2009-07-14, 11:17authored byVincent Dwyer
The electromigration EM lifetime in short copper interconnects is modeled using a previously
developed means of generating realistic interconnect microstructures combined with the
one-dimensional stress evolution equation of Korhonen et al. J. Appl. Phys. 73, 3790 1993 . This
initial analysis describes the void nucleation and subsequent growth in lines blocked at one end and
terminated with a pad at the other. For short copper interconnects, the failure time is largely spent
on void growth, and, for sufficiently short lines (≤ 50 mm), the growth is largely steady state. This
allows for the development of a simple expression for the variation of the failure time with
microstructure. Assuming that the diffusion activation energies are normally distributed, the
permanence property of summed lognormals leads to a roughly lognormal distribution for EM
failure times. Importantly for EM design rules, linear extrapolation on lognormal plot is found to
slightly underestimate interconnect reliability.
History
School
Mechanical, Electrical and Manufacturing Engineering
Citation
DWYER, V.M., 2008. Modeling the electromigration failure time distribution in short copper interconnects. Journal of Applied Physics, 104 (5), 053708