Loughborough University
Browse
energies-15-07210-v2 (1).pdf (2.19 MB)

Modelling case study of compact combination hybrids as low disruption decarbonised heat

Download (2.19 MB)
journal contribution
posted on 2022-12-06, 14:46 authored by Stephen WatsonStephen Watson, George Bennett
Transitioning from predominantly natural gas domestic heating to low carbon heating is one of the major challenges of the UK’s net zero decarbonisation pathway. Compact wall-hung combination boilers are the dominant heating appliance and continue to be installed as a rate of over 1.5 million per year, compared to less than 50 k per year for Heat Pumps. The disparity persists despite repeated Government support in the form of the Renewable Heat Incentive and the Green Homes Grant. Compact hybrid appliances offer a technology solution similar to the current combination boiler in terms of size and performance, which could be attractive to consumers. However, there is currently little knowledge of the emissions savings that could be achieved in practice by compact hybrid appliances. This research systematically analyses real world high frequency boiler data to evaluate the potential of such appliances to make carbon savings while emulating combination boiler operation. By utilising high frequency diagnostic data from combination boilers, the disaggregated (hot water and heating) demand is mapped onto hybrid models to determine the energy and emission impact. Exploration of the relative power output of the HP and boiler components of the modelled hybrid appliances provides insight into the appropriate specification of compact hybrids which can deliver similar heat service to boilers while maximising emissions savings. The analysis shows that hybrid appliances with moderately sized HPs can significantly contribute to the decarbonisation of the homes considered in the study. Considerable disruption could be avoided in retrofit due to the physical size of the proposed heat pump and ability of the hybrid system to operate with the existing heat emitter network.

Funding

UK Centre for Research on Energy Demand

Engineering and Physical Sciences Research Council

Find out more...

History

School

  • Architecture, Building and Civil Engineering

Published in

Energies

Volume

15

Issue

19

Publisher

MDPI

Version

  • VoR (Version of Record)

Rights holder

© The authors

Publisher statement

This article is an Open Access article published by MDPI and distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Acceptance date

2022-09-23

Publication date

2022-09-30

Copyright date

2022

eISSN

1996-1073

Language

  • en

Depositor

Dr Stephen Watson. Deposit date: 1 December 2022

Article number

7210

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC