Loughborough University
Browse
- No file added yet -

Modelling liquid film in modern GDI engines and the impact on particulate matter emissions – Part 1

Download (9.31 MB)
journal contribution
posted on 2022-09-06, 13:42 authored by Federico Biagiotti, Fabrizio Bonatesta, Sadjad Tajdaran, Davide Domenico Sciortino, Sunny Verma, Edward Hopkins, Denise Morrey, Changho Yang, Adrian SpencerAdrian Spencer, Changzhao Jiang, Robert Haigh
This paper presents the details of a Computational Fluid Dynamics methodology to accurately model the process of mixture preparation in modern Gasoline Direct Injection engines, with particular emphasis on liquid film as one of the main causes of Particulate Matter formation. The proposed modelling protocol, centred on the Bai-Onera approach of droplets-wall interaction and on multi-component surrogate fuel blend models, is validated against relevant published data and then applied to a modern small-capacity GDI engine, featuring centrally-mounted spray-guided injection system. The work covers a range of part-load, stoichiometric and theoretically-homogeneous operating conditions, for which experimental engine data and engine-out Particle Number measurements were available. The results, based on the parametric variation of start of injection timing and injection pressure, demonstrate how both fuel mal-distribution and liquid film retained at spark timing, may contribute to PN emissions, whilst their relative importance vary depending on operating conditions and engine control strategy. Control of PN emissions and compliance with future, more stringent regulations remain large challenges for the engine industry. Renewed and disruptive approaches, which also consider the sustainability of the sector, appear to be essential. This work, developed using Siemens Simcenter CFD software as part of the Ford-led APC6 DYNAMO project, aims to contribute to the development of a reliable and cost-effective digital toolset, which supports engine development and diagnostics through a more fundamental assessment of engine operation and emissions formation.

Funding

This investigation was financially supported by the Advanced Propulsion Centre (APC), as part of the Ford-led APC6 DYNAMO project, TSB/APC Project Ref. 113130.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

International Journal of Engine Research

Volume

23

Issue

10

Pages

1634-1657

Publisher

SAGE Publications

Version

  • VoR (Version of Record)

Rights holder

© IMechE

Publisher statement

This is an Open Access Article. It is published by SAGE Publications under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2021-05-24

Publication date

2021-06-15

Copyright date

2021

ISSN

1468-0874

eISSN

2041-3149

Language

  • en

Depositor

Prof Adrian Spencer. Deposit date: 18 June 2021