Upon application of ultrasonic waves to a suspension of solid particles in liquid, multiple scattering occurs at the particle/liquid interfaces leading to attenuation. It was recently shown through experimental verification that multiple scattering theory must include shear wave influences at the boundary between the liquid and solid particles in a nanofluid when the concentration of the scatterers is even as low as a few percent by volume. Herein, we consider silica spheres of 50−450 nm diameter in the long-wavelength regime to elucidate the form of the shear decay fields at the liquid/solid interface for individual particles. This is important because the overlap of these fields ultimately leads to the conversion of a compressional wave to shear waves and back into the compressional wave, the effect originating due to the density contrast between the particle and the
liquid. Therefore, we examine in detail the velocity, vorticity and viscous dissipation in the shear wave field and around the silica spheres using finite element modelling, giving clarity to the viscous boundary effects. We also compare the numerical modelling to semi-analytical results.
Funding
The authors gratefully acknowledge funding from EPSRC (EP/M026302/1).
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
Scientific Reports
Citation
FORRESTER, D.M., HUANG, J. and PINFIELD, V.J., 2019. Modelling viscous boundary layer dissipation effects in liquid surrounding individual solid nano and micro-particles in an ultrasonic field. Scientific Reports, 9:4956, DOI: 10.1038/s41598-019-40665-9.
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/
Acceptance date
2019-02-20
Publication date
2019-03-20
Notes
This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.