posted on 2019-01-11, 13:40authored byLeticya Lais Coelho, Dachamir Hotza, Arthur Senra Estrella, Suelen M. de Amorim, Gianluca Li-Puma, Regina F.P.M. Moreira
The modulation and tuning of the photocatalytic activity of commercial titanium dioxide (TiO2) P25 nanoparticles is demonstrated through the incorporation of lanthanum (La) and/or graphene oxide (GO). These composite materials, which could have applications in commercial products, were prepared by a two-step hydrothermal method from the corresponding precursors. The effect of La (0.05–2 mol%) and GO (5 m%) content on the crystal structure, morphology and photocatalytic activity of TiO2 was investigated by XRS, SEM, EDS, TEM, UV–vis DRS, point of zero charge, photoluminescence and the decolorization of methylene blue. Lanthanum modified the recombination rate of the photogenerated electron-hole charges on TiO2 by inducing an increase in the structural defects, which resulted in a significant suppression, up to 90%, of the photocatalytic activity in the UVA light region. In contrast, the addition of GO enhanced the photocatalytic activity of TiO2. Materials with tuned intermediate photoactivity within the entire range from high to very low were prepared by dosing appropriate amounts of La and GO species. The strategy of combining La and GO represents a useful and simple method for tuning or for suppressing the photocatalytic activity of TiO2 under UVA light irradiation in materials and consumer products using TiO2.
Funding
The authors gratefully acknowledge the Brazilian funding agencies CAPES and CNPq (Grant 405892/2013-6 and 304397/2010-5) for financial support.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
Journal of Photochemistry and Photobiology A: Chemistry
Volume
372
Pages
1 - 10
Citation
LAIS COELHO, L. ... et al, 2018. Modulating the photocatalytic activity of TiO2 (P25) with lanthanum and graphene oxide. Journal of Photochemistry and Photobiology A: Chemistry, 372, pp.1-10.
This paper was accepted for publication in the journal Journal of Photochemistry and Photobiology A: Chemistry and the definitive published version is available at https://doi.org/10.1016/j.jphotochem.2018.11.048.