Loughborough University
Browse

Monodispersed sirolimus-loaded PLGA microspheres with a controlled degree of drug-polymer phase separation for drug-coated implantable medical devices and subcutaneous injection

Download (9.97 MB)
journal contribution
posted on 2022-08-26, 13:17 authored by Zilin Zhang, Ekanem Ekanem, Mitsutoshi Nakajima, Guido Bolognesi, Goran VladisavljevicGoran Vladisavljevic

Monodispersed sirolimus (SRL)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres with a diameter of 1.8, 3.8 and 8.5 μm were produced by high-throughput microfluidic step emulsification - solvent evaporation using single crystal silicon chips consisted of 540-1710 terraced microchannels with a depth of 2, 4, or 5 μm arranged in 10 parallel arrays. Uniformly sized droplets were generated over 25 h across all channels. Nearly 15% of the total drug was released by the initial burst release during an accelerated drug release testing performed at 37 °C using a hydrotropic solution containing 5.8 M N,N-diethylnicotinamide. After 24 h, 71% of the drug was still entrapped in the particles. The internal morphology of microspheres was investigated by florescence microscopy using Nile Red as a selective fluorescent stain with higher binding affinity toward sirolimus. By increasing the drug loading from 33 wt% to 50 wt%, the particle morphology evolved from homogeneous microspheres, in which the drug and polymer were perfectly mixed, to patchy particles, with amorphous drug patches embedded within a polymer matrix to anisotropic patchy Janus particles. Janus particles with fully segregated drug and polymer regions were achieved by pre-saturating the aqueous phase with organic solvent which decreased the rate of solvent evaporation and allowed enough time for complete phase separation. This approach to manufacturing drug-loaded monodisperse microparticles can enable the development of more effective implantable drug delivery devices and improved methods for subcutaneous drug administration, which can lead to better therapeutic treatments. 

Funding

NPIF EPSRC Doctoral - Loughborough University 2017

Engineering and Physical Sciences Research Council

Find out more...

Bridge UK-JSPS Fellowship BR130302

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

ACS Applied Bio Materials

Volume

5

Issue

8

Pages

3766-3777

Publisher

American Chemical Society

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by American Chemical Society under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2022-06-23

Publication date

2022-07-16

Copyright date

2022

ISSN

2576-6422

Language

  • en

Depositor

Dr Goran Vladisavljevic. Deposit date: 24 June 2022

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC