Loughborough University
Browse

Multi-agent reinforcement learning based 3D trajectory design in aerial-terrestrial wireless caching networks

Download (5.32 MB)
journal contribution
posted on 2021-07-01, 14:21 authored by Yu-Jia Chen, Kai-Min Liao, Meng-Lin Ku, Fung Po TsoFung Po Tso, Guan-Yi Chen
This paper investigates a dynamic 3D trajectory design of multiple cache-enabled unmanned aerial vehicles (UAVs) in a wireless device-to-device (D2D) caching network with the goal of maximizing the long-term network throughput. By storing popular content at the nearby mobile user devices, D2D caching is an efficient method to improve network throughput and alleviate backhaul burden. With the attractive features of high mobility and flexible deployment, UAVs have recently attracted significant attention as cache-enabled flying base stations. The use of cache-enabled UAVs opens up the possibility of tracking the mobility pattern of the corresponding users and serving them under limited cache storage capacity. However, it is challenging to determine the optimal UAV trajectory due to the dynamic environment with frequently changing network topology and the coexistence of aerial and terrestrial caching nodes. In response, we propose a novel multi-agent reinforcement learning based framework to determine the optimal 3D trajectory of each UAV in a distributed manner without a central coordinator. In the proposed method, multiple UAVs can cooperatively make flight decisions by sharing the gained experiences within a certain proximity to each other. Simulation results reveal that our algorithm outperforms the traditional single- and multi-agent Q-learning algorithms. This work confirms the feasibility and effectiveness of cache-enabled UAVs which serve as an important complement to terrestrial D2D caching nodes.

History

School

  • Science

Department

  • Computer Science

Published in

IEEE Transactions on Vehicular Technology

Volume

70

Issue

8

Pages

8201-8215

Publisher

Institute of Electrical and Electronics Engineers

Version

  • AM (Accepted Manuscript)

Rights holder

© IEEE

Publisher statement

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Acceptance date

2021-06-30

Publication date

2021-07-02

Copyright date

2021

ISSN

0018-9545

eISSN

1939-9359

Language

  • en

Depositor

Dr Posco Tso. Deposit date: 1 July 2021

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC