- No file added yet -
Multi-layer scaffolds of poly(Caprolactone), poly(glycerol sebacate) and bioactive glasses manufactured by combined 3d printing and electrospinning
journal contribution
posted on 2020-06-24, 12:48 authored by Adja Toure, Elisa MeleElisa Mele, Jamieson ChristieJamieson Christie© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Three-dimensional (3D) printing has been combined with electrospinning to manufacture multi-layered polymer/glass scaffolds that possess multi-scale porosity, are mechanically robust, release bioactive compounds, degrade at a controlled rate and are biocompatible. Fibrous mats of poly (caprolactone) (PCL) and poly (glycerol sebacate) (PGS) have been directly electrospun on one side of 3D-printed grids of PCL-PGS blends containing bioactive glasses (BGs). The excellent adhesion between layers has resulted in composite scaffolds with a Young’s modulus of 240–310 MPa, higher than that of 3D-printed grids (125–280 MPa, without the electrospun layer). The scaffolds degraded in vitro by releasing PGS and BGs, reaching a weight loss of ~14% after 56 days of incubation. Although the hydrolysis of PGS resulted in the acidification of the buffer medium (to a pH of 5.3–5.4), the release of alkaline ions from the BGs balanced that out and brought the pH back to 6.0. Cytotoxicity tests performed on fibroblasts showed that the PCL-PGS-BGs constructs were biocompatible, with cell viability of above 125% at day 2. This study demonstrates the fabrication of systems with engineered properties by the synergy of diverse technologies and materials (organic and inorganic) for potential applications in tendon and ligament tissue engineering.
History
School
- Aeronautical, Automotive, Chemical and Materials Engineering
Department
- Materials
Published in
NanomaterialsVolume
10Issue
4Pages
626Publisher
MDPIVersion
- VoR (Version of Record)
Rights holder
© The authorsPublisher statement
This is an Open Access Article. It is published by MDPI under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Acceptance date
2020-03-25Publication date
2020-03-28Copyright date
2020Notes
This article belongs to the Special Issue Progress in Electrospun Nanofibers and NanocompositesISSN
2079-4991eISSN
2079-4991Publisher version
Language
- en
Depositor
Dr Jamieson Christie. Deposit date: 23 June 2020Article number
626Usage metrics
Categories
No categories selectedLicence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC