
This item was submitted to Loughborough's Research Repository by the author. 
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Multi-strategy hybrid heuristic algorithm for single container weakly
heterogeneous loading problem

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1016/j.cie.2022.108302

PUBLISHER

Elsevier

VERSION

AM (Accepted Manuscript)

PUBLISHER STATEMENT

This paper was accepted for publication in the journal Computers and Industrial Engineering and the definitive
published version is available at https://doi.org/10.1016/j.cie.2022.108302

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Zhang, Dezhen, Chenhao Gu, Hui Fang, Chengtao Ji, and Xiuguo Zhang. 2022. “Multi-strategy Hybrid
Heuristic Algorithm for Single Container Weakly Heterogeneous Loading Problem”. Loughborough University.
https://hdl.handle.net/2134/19947785.v1.

https://lboro.figshare.com/
https://doi.org/10.1016/j.cie.2022.108302


Multi-strategy hybrid heuristic algorithm for single

container weakly heterogeneous loading problem

Dezhen Zhanga, Chenhao Gua, Hui Fangb, Chengtao Jic, Xiuguo Zhanga

aCollege of information science and technology, Dalian Maritime University, Dalian,
China

bDepartment of Computer Science, Loughborough University, England, United Kingdom
LE11 3TU

cDepartment of Computing, School of Advanced Technology, Xi’an Jiaotong-Liverpool
University, Suzhou, China.

Acknowledgement

This work is funded by the National Natural Science Foundation of China

(Grant Number 51579025), and the Natural Science Foundation of Liaoning

Province of China (Grant Number 201602089).

∗Corresponding author
Email addresses: dezhen@dlmu.edu.cn (Dezhen Zhang), h.fang@lboro.ac.uk (Hui

Fang)



Abstract

Three-dimensional single container weakly heterogeneous loading problem is

one of the most classical tasks which has various applications in manufacture

and logistics industry. Solving this problem could improve transportation

efficiency to bring great benefit to shipping customers. During the last two

decades, many heuristic, meta-heuristic and hybrid algorithms have been

proposed to maximize container volume utilization to reduce the waste of

container space significantly. Despite their success in many real-world appli-

cations, it is still a challenging task to recommend satisfactory loading levels

within a limited time frame when clients approach for options of different

combinations of shipping items. In this paper, we propose a novel multi-

strategy hybrid heuristic algorithm to achieve timely planning for clients in

a required short time frame. In specific, a probabilistic model is used to com-

bine the strength of two optimization strategies, i.e. an ant colony method

and a constructive greedy method, to speed up the optimization process and

ensure better convergence. In addition, a tree pruning strategy is designed

to further improve the efficiency of the hybrid heuristic algorithm. Extensive

experiments demonstrate the effectiveness of our method in terms of both

volume utilization rate and algorithm processing speed compared to state-

of-the-art methods. Based on the comparison results by using BR dataset,

we achieved averagely 94.31% volume utilization rate and 50.16 seconds pro-

cessing speed, which is the best performance by considering both algorithm

effectiveness and efficiency. Further, our proposed method has been deployed

in a real business case to provide plan solutions to individual customer ship-
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ping requests and achieved high customer satisfaction rate.

Keywords: 3D-CLP, weakly heterogeneous single container loading

problem, ant colony algorithm, constructive heuristic algorithm,

multi-strategy optimization.

1. Introduction

Three-dimensional container loading problem (3D-CLP) attracts signif-

icant attentions because of its various applications in manufacture and lo-

gistics industry. 3D-CLP searches for solutions to arrange cargo layout in

containers so that container space utilization is maximized, thereby minimiz-5

ing the number of required trips across the global container transportation

system (Zhoujing et al., 2008). Among different types of 3D-CLP, weakly

heterogenous single container problem refers to loading many items which

belong to a few item types to one type of containers (Gehring and ortfeldt,

1997). It has become one of the most classical tasks as it addresses key10

shipping concerns from logistics customers. Since the use of containers to

load cargoes has been the most popular practice in sea and rail transporta-

tion, solving this weakly heterogenous problem under different constraints

improves loading efficiency, thus serving mutual interests of wide range of

stockholders, e.g., logistics companies, logistics customers, traders and envi-15

ronment agencies.

During these couple of decades, many optimization algorithms have been

proposed to solve the 3D-CLP problem. These algorithms can be categorized

into conventional heuristics, tree-search-based and meta-heuristics methods
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(Fanslau and Bortfeldt, 2010). Conventional heuristics and tree-search-based20

methods rely on either human prior knowledge or local greedy search algo-

rithms to maximize container volume utilization (Liu et al., 2014; Araya et al.,

2017). In contrast, meta-heuristic algorithms introduce stochastic process in

their search strategy for better convergence (Dereli and Das, 2011; Bayraktar

et al., 2021). Recently, there are some hybrid algorithms introduced to fur-25

ther improve the loading performance (Saraiva et al., 2019; Ozcan and Evren,

2021). Despite high container volume utilization rate reported by many ad-

vanced algorithms, it is still a challenging task to achieve satisfactory loading

levels within a limited time frame. In a real-world scenario, when a client

approaches a logistics company for recommendations of different combina-30

tions of shipping items, it is expected to provide adaptive shipping options

with high loading levels based on requests from customers within a limited

processing time.

In this paper, to solve the above-mentioned problem, we propose a novel

multi-strategy hybrid heuristic algorithm to improve single container weakly35

heterogeneous 3D-CLP optimization processing speed while ensuring bet-

ter convergence compared to state-of-the-art 3D-CLP methods. In specific,

we design a probabilistic model to control selections of a greedy stacking

method (GSM) and an ant colony stacking method (ASM). At the early

stage, the model generates high probability to select a GSM model to en-40

hance pheromone accumulation of ASM. This strategy speeds up the pro-

cessing of ASM significantly. While at the late stage, unlike the two-phase

algorithms, our method still allows to reuse GSM to further fine-tune the

solutions obtained from ASM by utilizing local greedy search. In addition,
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the probabilistic model introduce randomness in the heuristic process which45

further enhance the algorithm reliability via an ensemble effect. This design

makes the two heuristic strategies to complement with each other to achieve

a synergy effect for optimization. Further, we build a tree-pruning matrix

to narrow the searching space. In the pruning matrix, each state value cor-

responding to one loading chain. It reduces the feasible solution space of50

the problem, thereby effectively reducing the program operation efficiency.

By using the proposed multi-strategy hybrid algorithm, both high container

volume utilization rate and fast processing speed are achieved to improve the

user experience of logistics customers.

We highlight the contributions of our work as: (i) we design a novel55

heuristic method to tackle one of the most classical single container weakly

heterogeneous 3D-CLP. To our best knowledge, this is the first work to deploy

probabilistic model to explore the complementary advantages of a heuristic

and a meta-heuristic method during the entire process of the optimization;

(ii) we introduce a pruning matrix in the optimization to reduce the searching60

space for fast process without compromising the level of container utilization;

and (iii) we conduct comprehensive experiments, including a case study to

optimize the logistics of a bicycle factory and quantitative comparison with

state-of-the-art methods to demonstrate that the proposed method is supe-

rior in terms of both volume utilization rate and algorithm processing speed.65

The remainder of the paper is structured as follows. Section 2 present

the most related work of our paper. Section 3 provides the problem state-

ment and preliminary defined in our work. Section 4 describes the proposed

multi-strategy hybrid heuristic algorithm in detail. In Section 5, experimen-

4



tal results demonstrate the effectiveness of our proposed method. Finally,70

Section 6 draws the conclusion and discusses future work.

2. Related work

Both conventional heuristics and tree-search-based methods can be cate-

gorized as constructive heuristics to maximize container volume utilization.

Pisinger et al. (Pisinger, 2002) proposed a wall-building based method to75

decompose container structure into a number of layers which are further

split into a number of strips where the packing of a strip is formulated as a

Knapsack Problem. Inspired by an old prover ’Gold corner, silver side and

strawy void’, Huang et al. (Huang and He, 2009) proposed a caving degree

approach (CDA) to pack items into corner as its priority so that items are80

close to each other to reduce the space waste. He et al. (He and Huang,

2011) made improvements on the CDA and proposed a fit degree algorithm

(FDA) to further narrow the searching space in CDA. Egeblad et al. (Egeblad

and Pisinger, 2009) introduced an abstract representation of box placement,

namely sequence triple, for the three-dimensional knapsack problem. In each85

iteration, the sequence triple is transformed to a packing solution to evaluate

its objective value. Fanslau et al. (Fanslau and Bortfeldt, 2010) presented

a tree search algorithm for the 3DCLP, where a special form of tree search

to ensure a balance between its search range and diversity. Liu et al. (Liu

et al., 2014) presented a binary tree search algorithm, where each tree node90

denotes a container loading plan. BSG (Araya and Riff, 2014; Araya et al.,

2017) is another tree-search-based method based on beam search (Norvig,

1992).
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Meta-heuristic algorithms, as stochastic search methods, are dominant

in solving the 3D-CLP problem. Among them, evolutionary optimization95

algorithms, such as Tabu search (Lodi et al., 2002; Liu et al., 2011), ge-

netic algorithm (Gehring and ortfeldt, 1997; Bortfeldt and Gehring, 2001;

Kang et al., 2012; Jamrus and Chien, 2016),Bee Colony algorithm (Dereli

and Das, 2011; Bayraktar et al., 2021) and differential evolution (Li and

Zhang, 2015), are popular methods to tackle the loading task. Kang et al.100

(Kang et al., 2012) presented the Improved Deepest Bottom Left with Fill

(I-DBLF) algorithm to utilize a hybrid genetic algorithm to solve the 3D bin

packing problem (3D-BPP). Jamrus (Jamrus and Chien, 2016) developed an

extended priority-based hybrid genetic algorithm (EP-HGA) for the present

LCL problem to determine the loading patterns. Dereli (Dereli and Das,105

2011) designed a bee(s) algorithm by hybridizing a heuristic filling proce-

dure to work with discrete variables, and used different operators to reach

neighborhood solutions. T. Bayraktar (Bayraktar et al., 2021) proposed a

memory-integrated ABC algorithm to meticulously select useful search steps

in local search, and a genetic operator-based ABC algorithm to intelligently110

generate the next search steps in global search inspired by efficient solutions.

Moreover, a joint hybrid ABC algorithm with reinforcement approach was

developed to provide effective solutions for single container loading problem

sets with large number of constraints. However, compared to conventional

heuristics, these meta-heuristic methods are more time consuming due to115

their nature of the searching process.

Many latest algorithms are designed by introducing stronger constraints,

such as limited category number (do Nascimento et al., 2021), to further
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improve the optimization performance. Ozcan et al. (Ozcan and Evren,

2021) developed a Filltype method, which enforced strong prior knowledge120

on ranking orders for loading and applied an INLP model to determine box

sizes and box positions by using the layer-building approach. Oliviana et

al. (do Nascimento et al., 2021) presented an exact approach that defined

twelve practical constraints when linear programming is iteratively used to

solve the packing in planes problem. Guillem et al. (Bonet Filella et al.,125

2021) proposed a mixed-integer linear programming for the MDCLP with

soft unloading constraints. Although these methods are typically operated

in a time-efficient manner, they converge to sub-optimal solutions due to the

non-convex optimization searching space.

Multi-strategy methods are used for the optimal design in recent years. In130

(Peng et al., 2021b), Peng et al. proposed a multiple strategy serial frame-

work to improve cuckoo search algorithm to avoid the local optimum due

to its original unitary search strategy. In (Abbasi et al., 2021), Abbasi et

al. introduced a chaotic initialization approach and several updated besiege

strategies to improve Harris Hawk optimization (HHO) method for the opti-135

mal design of tapered roller bearings. Similarly, in (Li et al., 2021a), Li et al.

presented to use logarithmic spiral and opposition-based learning and a local

search technique to improve the global convergence of HHO. In (Peng et al.,

2021a), Peng et al. considered a dynamic adaptive selection and different

mutation and crossover strategies to present co-evolutionary differential evo-140

lution method for mixed-variable optimization. While in (Li et al., 2021b),

Li et al. extend the differential evolution method with multi-population and

ensemble of mutation strategies to improve its convergence. In (Lu et al.,
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2021), Lu et al. presented the Niching method by deploying population-

entropy, distribution-radius, and utility-fitness to achieve a better trade-off145

between exploitation and exploration for the optimization. In (Chen et al.,

2021), Chen et al. designed pheromone fusion and pheromone recombination

strategy to improve the convergence of ant colony algorithm.

We summarize the related work in a comprehensive appendix Table A1

shown as appendix.150

3. Problem statement and Preliminary

Weakly heterogeneous single container loading problem is the most clas-

sical task in 3D-CLP. In our work, assume a list of loading cargoes which

belong to a few cargo types is given by a shipping client, our proposed heuris-

tic method aims to provide an optimal loading plan to maximize container155

space utilization in a short time period. It is worth to note that our work is

built with the following assumptions:

• The shape of both containers and cargoes is cuboid, and the size of

each cargo is smaller than the size of a container;

• The center of gravity of a cargo is its geometric center;160

• The capacity of each cargo is not considered in our heuristic algorithm;

• The deformation of a cargo is not considered in our heuristic algorithm;

3.1. Notation Definition

We summarize all the variables and abbreviations which are used in our

paper for clarification as follows:165
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N : The total quantity of cargoes to be loaded;

nk: The loading quantity of class k cargoes in the range of

[nkmin, nkmax];

uk: The number of stacking layers of class k cargoes;

vi: The volume of each cargo i;

K: Number of cargo types;

M : Maximum number of iterations;

Ui: Binary flag for cargo loading. If cargo i is loaded into the

container, then Ui = 1, otherwise Ui = 0;

L,W,H: The length, width and height of the container;

li, wi, hi: The length, width and height of cargo i;

PT
i

(
xT
i , y

T
i , z

T
i

)
: The right-front-upper corner of cargo i in the container and

its coordinates;

PB
i

(
xB
i , y

B
i , zBi

)
: The left-back-bottom corner point of cargo i in the con-

tainer and its coordinates;

s: Status value, which is a binary number generated by the

type of cargoes loaded and the quantity of each type of

cargoes;

SΠ (i, p): The projected area of the cargo i on the cargo p along the

−z axis on the XOY plane.

3.2. Practical constraints

As a loading task in a real-world application, we face several practical

constraints which are defined as follows:

Quantity Constraint The actual loading quantity of each type of car-

goes cannot exceed the given quantity range of this type of cargoes.

nkmin ≤ nk ≤ nkmax, 1 ≤ k ≤ K (1)

Direction Constraint Cargo placement direction is parallel or orthog-
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onal to container surface on both sides of the container. The six placement170

directions are expressed with the follow equations:

li//H&wi//L&hi//W ⇒ zTi − zBi = li, x
T
i − xB

i = wi, y
T
i − yBi = hi(2.1)

li//L&wi//H&hi//W ⇒ xT
i − xB

i = li, z
T
i − zBi = wi, y

T
i − yBi = hi(2.2)

li//W&wi//L&hi//H ⇒ yTi − yBi = li, x
T
i − xB

i = wi, z
T
i − zBi = hi(2.3)

li//H&wi//W&hi//L ⇒ zTi − zBi = li, y
T
i − yBi = wi, x

T
i − xB

i = hi(2.4)

li//L&wi//W&hi//H ⇒ xT
i − xB

i = li, y
T
i − yBi = wi, z

T
i − zBi = hi(2.5)

li//W&wi//H&hi//L ⇒ yTi − yBi = li, z
T
i − zBi = wi, x

T
i − xB

i = hi(2.6)

Taking Eqn.2.5 as an example, the right-front-upper corner coordinate

cargo i, the left-back-lower corner coordinate of cargo i, the positional rela-

tionship between it and the container coordinate are illustrated in Fig. 1:

Fig. 1. Schematic diagram of cargo placement direction and marking points.

175

Place constraint The cargo must be placed on a solid surface, i.e. the

bottom surface of the cargo on an upper layer must be in contact with the
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top surface of the cargo on a lower layer. This relationship is expressed in

the follow equations.∑
SΠ (i, p) =

(
xT
i − xB

i

)
×
(
yTi − yBi

)

SΠ(i, p) =(xT
i − xB

i + xT
p − xB

p −max(xT
p , x

T
i ) +min(xB

p , x
B
i ))×

(yTi − yBi + yTp − yBp −max(yTp , y
T
i ) +min(yBp , y

B
i ))

p ∈ {p|Up = Ui = l, zTp = zBi , x
B
p ≤ xB

i , x
T
p ≥ xT

i , y
B
p ≤ yBi , y

T
p ≥ yTi }∪

{p|Up = Ui = 1, zTp = zBi ,max(xT
p , x

T
i )−min(xB

p , x
B
i ) < xT

i − xB
i + xT

p − xB
p ,

max(yTp , y
T
i )−min(yBp , y

B
i ) < yTi − yBi + yTp − yBp }

where minxB
i ≥ 0,minyBi ≥ 0,minzBi ≥ 0,minxT

i ≥ 0,minyTi ≥ 0,minzTi ≥ 0

Volume Constraint The total volume of the actual loaded cargo cannot

be greater than the maximum loading volume of the container.

N∑
i=1

li × wi × li ≤ L×W ×H (2)

Layer Constraint The actual number of longitudinal layers of the loaded

cargo cannot exceed the maximum number of stacking layers of the lowest

layer of cargo.

uk ≤ ukmax, l ≤ k ≤ n (3)

Our proposed method generates an optimal loading plan by satisfying all

the above mentioned constraints.180
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3.3. Objective function

The optimization goal of the single container weakly heterogeneous 3D-

CLP is to minimize the idle space of containers when loading cargoes under

certain constraints. In our work, we aim to maximize the objective function,

i.e. volume utilization rate (VUR), as fast as possible when dealing with

requests from logistics customers. The objective function is expressed as

follows:

maxV =

∑N
i=1 li × wi × hi × Ui

L×W ×H
(4)

3.4. Spatial model

The cargo selection method is based on the relative size of the cargo

volume, the current space to be loaded and the order of placement. After each

selected cargo is placed in the space to be loaded, it makes structural changes185

on the space layout. The three-space division method (Bischoff, 2006) is

used as the basis for space decomposition and comprehensive utilization.

The spaces generated during loading are illustrated in the Fig. 2. They are

defined as:

Definition 1. Unloaded space (VU) refers to the space where cargoes190

can be loaded at the current loading layer.

Definition 2. Remaining space (VR) refers to the space that can be

used or combined for further loading at the current layer.

Definition 3. Idle space (VI) refers to the space where remaining cargoes

can be loaded in future loading layers.195

In the loading process, when filling the VU, the cargoes are placed in

an order from bottom to top (z-axis direction), from left to right (y-axis

12



Fig. 2. Schematic diagram of space definition.

direction), and from back to front (x-axis direction). After filling each layer

space on the Y OZ plane, cargoes are placed on the next layer in VI until the

container is full.200

3.5. Remaining space merging algorithm

With continuous loading process of the container, more and more irregular

”scattered” spaces are produced in different positions. Space merging refer to

merging the small remaining spaces, and process them into usable rectangles,

which is convenient to put more cargoes in the subsequent loading process, so205

as to improve the utilization rate of space. An example of remaining spaces

V R1,V R2,V R3 before merging is illustrated in Fig. 3.

In our work, we utilize the following space merging rules to convert scat-

tered small spaces into reusable spaces:

(1) Merge left and right remaining spaces: It is necessary to ensure that

the right side of the remaining space V R1 on the left includes the left side

of the remaining space V R2 on the right, under the premise of ∀i ∈ N, i <

13



Fig. 3. Schematic diagram of remaining space.

T ,xB
t + xT

t − xB
i − xT

i < xT
t − xB

t + xT
i − xB

i and zBt + zTt − zBi − zTi <

zTt − zBt + zTi − zBi and yBt = yTi

Ymin = min
(
yBt , y

B
i

)
(5)

where the value of yBi is located in the remaining space V R1, the value of yBt210

is located in the remaining space V R2, Ymin stands for the minimum value

of the remaining space in y coordinate after each space merging.

According to the selected Ymin, expand the space to the left and update

the information in the remaining space Table. Fig. 4(a) illustrates the merg-

ing operation of a left remaining space and a right remaining space.215

(2) Merge front and rear remaining spaces:Decompose the remaining

space V R2 into two sub-spaces V R2L, V R2R along the right side of box,

as shown in Fig. 4(b).

Ensure that the back side of the remaining space V R2R on the front

includes the front side of the remaining space V R3 on the rear, under the

premise of ∀i ∈ N, i < T , yBt + yTt − yBi − yTi < yTt − yBt + yTi − yBi and

14



(a) Merging left and right (b) Merging front and rear (c) The final merging result

Fig. 4. Illustration of the remaining spaces merging process.

zBt + zTt − zBi − zTi < zTt − zBt + zTi − zBi and xB
t = xT

i

Xmin = min
(
xB
t , x

B
i

)
(6)

where the value of xB
i is located in the remaining space V R3, the value of

xB
t is located in the remaining space V R2R, Xmin stands for the minimum220

value of the remaining space in x coordinate after each space merging.

According to the selected Xmin, expand the space to the rear and update

the information in the remaining space table. After merging the front and

rear spaces, the final effect is illustrated in Fig. 4(c).

4. Multi-strategy hybrid heuristic algorithm225

Our multi-strategy hybrid heuristic algorithm is built on an ant colony

stacking method (ASM). Classical ant colony algorithm shows great perfor-

mance when dealing with extremely large and non-convex searching space.

However, it has two well-known limitations: (i) at the early optimization

15



stage, ant colony algorithm has to take time to accumulate pheromone infor-230

mation to guide its convergence which slows down the optimization process

significantly; and (ii) it misses the refinement to achieve the optimal solution

although its design avoids the convergence at local minima. Therefore, in

our method, we propose to utilize a probabilistic model to integrate a greedy

stacking method (GSM) with the ant colony method to improve the conver-235

gence efficiency as well as the loading capacity via local refinement. With

the help of the GSM, the pheromone information is accumulated much faster

than a standard ASM method at the early heuristic searching stage. Fur-

thermore, the GSM uses a local greedy strategy to refine the solutions from

the ASM to achieve better convergence. Further, the probabilistic model in-240

troduces randomness during the heuristic process that behaves an ensemble

model effect in the optimization. This innovative combination of ASM and

GSM via a probabilistic model outperforms other two-phase methods and

hybrid methods as the advantages of these two algorithms are fully explored

during the entire heuristic searching process.245

In this section, we explain the detail of our proposed method in five

subsections: in Subsection 4.1, we define the searching space of the 3D-

CLP with the constraints we face in a real-world application. In Subsection

4.2, we introduce our ASM heuristic strategy and its designed pheromone

state. Following it, we present the GSM heuristic strategy in Subsection 4.3.250

Further, the proposed selection strategy which is the key to integrate ASM

and GSM is explained in Subsection 4.4. Finally, we also propose a pruning

matrix strategy to further speed up the heuristic process in Subsection 4.5.
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4.1. Loading plan solution (searching) space definition

Before we design a heuristic method to optimize the loading plan, a255

searching space is defined to clarify how heuristic strategies are proposed

to find an optimal loading solution from this non-convex space. For each

loading solution, it is composed of numbers and types of loading cargoes as

well as their loading sequence.

When a cargo item is loaded in a loading sequence, there are 6 options to260

add this item under the condition of satisfying the above-defined direction

constraint and place constraint. These 6 options can be formalized in

the following equation:

[x
′T
i , y

′T
i , z

′T
i ] = [xT

i , y
T
i , z

T
i ]×

1 0 0

0 cosα −sinα

0 sinα cosα

×


cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ

×


cosγ −sinγ 0

sinγ cosγ 0

0 0 1

 (7)

And


α = {0◦, 90◦} , β = 0◦, γ = 0◦

α = {0◦, 90◦} , β = 90◦, γ = 90◦

α = {0◦, 90◦} , β = 0◦, γ = 90◦

.

where (xT
i , y

T
i , z

T
i ) refers the initial right front upper corner of the cargo item265

i and (x
′T
i , y

′T
i , z

′T
i ) is the corresponding corner after changing the posture

of the item. Since the axis of the cargo body is parallel to the axis of the

container, α, β, γ ∈ {0◦, 90◦}.

In our work, during the placement process, it is realized that the generated

remaining spaces have more regular shape when the width in the placement270

layer is considered as the highest priority. Simply put, the generated spaces

17



are easily reused to add more items. Therefore, under this circumstance

with the priority for the local loading, we could convert this 3D placement

problem into a 2D form. This assumption reduces the dimension of the

searching space significantly without sacrificing the loading performance. As275

illustrated in Fig. 5, the cargo and the space to be loaded are consequently

projected on the Y OZ plane.

z

y

),,( TTTT zyxP 

),,( T

i

T

i

T

i

T

i zyxP

),,( BBBB zyxP 

),,( B

i

B

i

B

i

B

i zyxP

Fig. 5. Projection diagram of cargo and space to be loaded.

When we add new item into the remaining space, we design a local loading

strategy which minimizes the sum of the remaining scale areas in the height

direction and width direction (presented as the shading area in Fig. 5).

Consequently, the local space utilization rate is maximized.

min{[((P T
Ω (y

T
Ω)− PB

Ω (yBΩ ))%(P T
i (y

T
i )− PB

i (yBi )))] ∗ (P T
i (z

T
i )− PB

i (zBi ))

+[((P T
Ω (z

T
Ω)− PB

Ω (zBΩ ))%(P T
i (z

T
i )− PB

i (zBi )))] ∗ (P T
i (y

T
i )− PB

i (yBi ))}

(8)

where, P T
Ω (x

T
Ω, y

T
Ω, z

T
Ω) and PB

Ω (xB
Ω , y

B
Ω , z

B
Ω ) are the upper right and lower left

corner coordinates of the current space to be loaded. P T
i (x

T
i , y

T
i , z

T
i ) and
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PB
i (xB

i , y
B
i , z

B
i ) is the upper right and lower left corner coordinates of the280

loading cargo i respectively.

4.2. ASM strategy and its pheromone state

In each searching iteration, ant colony algorithm identifies numbers and

types of cargoes, and their loading orders via using the pheromone infor-

mation. After comparing different solution options at each iteration, the

pheromone is updated for future usage. Therefore, the algorithm complexity

heavily relies on the design of the pheromone state. For the key code state de-

sign, we propose a new state word representation. The formal representation

of the state word is expressed as,

Sk
a(T,Q) = [t1t2..tk..tK |qQ1 (t1)q

Q
2 (t2)..q

Q
k (tk)..q

Q
K(tK)] (9)

where k is the number of cargoes to be loaded and a is the a ant.

tk = {0, 1} indicates whether the k-th cargo is loaded, 1 indicates loaded,

and 0 indicates not loaded.285

qQk (tk) = [0..0] is a Q-digit consisting of 0 or 1 binary code, which indicates

the loading quantity of the k-th kind of goods, and the maximum loading

quantity is 2Q − 1 cargoes.

The key code state is illustrated in Fig. 6 and the structure of the status

word is shown as:290

In the ASM, we use a key-value tree structure for the pheromone storage.

In specific, the K ∗ (1 + Q)-bit binary code is used as the key value in the

tree structure, and the pheromone states are saved as value. Noting that the

relationship between keys and values is 1-to-n. The value of pheromone is
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t1(k) tM(k) q1(t1(k)) qM(tM(k))

Type Domain（T） Quantity Domain（Q）

[0000000000,1111111111]... 0/1 ... [0000000000,1111111111]0/1

Fig. 6. State word representation.

formalized as follows:

valuei(S
k
a(T,Q)) = [k, d, xB

i , y
B
i , z

B
i , x

T
i , y

T
i , z

T
i , V Ri] (10)

where i represents the ith current loading cargo, k represents the current

loading cargo type, d represents the loading direction of the cargo, xB
i , y

B
i , z

B
i

are the left bottom corner coordinate of the cargo, xT
i , y

T
i , z

T
i are the right

top corner coordinate of the cargo after the posture adjustment, and V Ri

is the remaining space of current layer after the loading. To ensure that, in295

the worst case, the time complexity of query, insert or delete is O(logn), we

utilize the red black tree (Bose et al., 2012) to access the loading information

stored in the tree. Because of the exponential growth of the key-value pairs,

the feasible solution space is untraceable. Despite its slow process, the ASM

promises the convergence of the algorithm.300

4.3. GSM strategy

GSM is a greedy heuristics method which has the advantage to converge

to local minima in an extremely fast manner (He et al., 2012). Although it

cannot guarantee global optimal solution convergence, it is a key element to

speed up the ASM convergence as well as refine the ASM solutions in our305
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proposed method. Different to classical GSM used in (Zhu and Lim, 2012),

we also update the pheromone information for the proposed ASM strategy

by using the GSM strategy. The following procedure is the heuristic process

in our GSM strategy:

Step 1: Initialize the pheromone of each node in the ASM.310

Step 2: Judge whether the current space is a new layer. If yes, select

a cargo with the largest volume and place it by using the loading heuristic

algorithm which is explained in Section 4.1; if not, go directly to Step 3.

Step 3: Determine the space to be loaded based on the order of top-

right-front of the previous placement of a cargo, and determine the space315

to be loaded based on the remaining space consolidation algorithm which is

explained in the Section 3.5.

Step 4: Select a cargo with the largest volume that can be loaded in the

space, place it by using the loading heuristic algorithm which is explained in

Section 4.1, and update the pheromone of the current node of ASM;320

Step 5: Repeat step 2 to step 4 until no remaining space is left in this

layer.

We further provide an example to illustrate the procedure: considering

the front cargo i-1 of the cargo i currently to be loaded. If vi + △ ≤ vi−1,

△ ∈ [0, C] is a constant, then the placement rule is,325

1○ If min {li, wi, hi} ≤ H −max
(
zTj

)
, placed in the +Z direction;

2○ If min {li, wi, hi} ≤ H −max
(
yTj

)
,place in the +Y direction;

3○ If min {li, wi, hi} ≤ H −max
(
xT
j

)
, place it in the +X direction.

This GSM strategy ensures that the current space is loaded is as full as

possible, and the loaded cargoes are as regular as possible.330
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4.4. Selection strategy

We design a selection probabilistic rule to switch between the GSM and

ASM for the heuristic search. The probability values are generated based

on the difference between a uniform random distribution function and a nor-

mal distribution function. For example, at current iteration τ , a random

number between 0 and RAND MAX is generated where RAND MAX is the

maximum value among all random numbers. For the convenience of compar-

ison, it is normalized by taking the modulus form, which is expressed as the

following equation:

R(τ) = rand()%RAND MAX (11)

in which R(τ) ∈ [0, 1]. With respect to the normal distribution function

P (τ), we take the partial distribution on the right side of the symmetry axis

that is greater than zero, and normalize it, which is expressed as the following

equation:

P (τ) =

∫M

0
1√
2Πσ

e−
(k−µ)2

2σ d(τ)

(k × 1√
2Πσ

)
(12)

where τ is the current number of iterations, M is the maximum number of

iterations, then P (τ) ∈ [0, 1]. In particular, let σ be 1, τ = µ, and be a

standard normal distribution. When R(τ) − P (τ) ≤ 0, the GSM is used

to select cargoes. While when R(τ) − P (τ) > 0, the ASM is used for the335

heuristic search.

The generated probabilistic values conform to the exponential distribu-

tion law perfectly which is illustrated in Fig. 7. It can be seen that, on

the one hand, at the early stage of the algorithm, the probability of using

22



GSM to select cargoes is high (the range below the horizontal axis) while340

there is still a certain probability to use ASM (the range above the horizon-

tal axis). On the other hand, with the increase of the number of iterations,

the probability of using ASM algorithm increases gradually while there is

still the probability of using GSM to select cargoes. This ensures that the

two strategies complement with each other to improve the heuristic efficiency345

and better convergence.

Fig. 7. Schematic diagram of dynamic hybrid of two selection methods.

The procedure of our selection strategy is shown in the following steps:

Step 1: Determine whether the current node pheromone concentration

reaches the effective range, if so, use the current node pheromone; if not,

initialize the current node pheromone concentration;350

Step 2: Judge whether the current space is a newly opened layer, if yes,

select a cargo with the largest volume that can be loaded, place it according

to the heuristic algorithm for determining the direction of the cargo in 4.1,

and proceed to the next step; if not, go to step 3;
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Step 3: Determine the space to be loaded according to the order of top-355

right-front of the previous placement of the cargoes, and determine the space

to be loaded according to the 3.5 remaining space consolidation algorithm;

Step 4: Determine the cargoes to be loaded according to the node pheromone

concentration and the sequence of operators, and place them according to

the heuristic algorithm for determining the direction of the cargoes in 4.1;360

Step 5: Update the pheromone concentration and repeat steps 2 to 5 until

the current layer is remaining space that is too small to load any a box;

Step 6: Open a new layer to determine whether the current layer can load

the cargoes. If it can, go to step 2; if not, add 1 to the ant number to update

the pheromone concentration;365

Step 7: Judge whether the number of ants reaches the maximum number

of ants, if so, end the loading and output the optimal loading chain; otherwise,

execute step 1.

4.5. Pruning matrix strategy (PMS)

Considering that some solutions produce a large amount of very small re-370

maining space at the beginning of operation, it is obviously unable to achieve

the approximate optimal solution required by the algorithm and can be dis-

carded. Therefore, we propose an early stop criterion to determine whether

the current search needs to be continued based on the current solution that

have been obtained from the previous layer. The red-black tree established375

by querying the status value and the size of the idle space performs pruning

operations.

Assume K is the number of types of cargoes, T ∗
i is the corresponding

optimal type domain after placing the i-th cargo, Q∗
i is the corresponding

24



optimal quantity domain, and V R∗ is the corresponding remaining space.380

If there is an ant a that places the i-th cargo in space, the corresponding

type domain is
⋃K

i=1 Tai , i ∈ [1, K] and T ∗
i =

⋃K
i=1 Tai , the corresponding

quantity domain is
∑K

i=1Qai and Q∗
i =

∑K
i=1Qai , and its remaining space is

V R(⟨Ta1||Ta2||..||TaK ,
∑K

i=1Qai⟩), abbreviated as V R
{
⟨
⋃K

i=1 Tai ,
∑K

i=1 Qai⟩
}
,

and V R∗ = V R
{
⟨
⋃K

i=1 Tai ,
∑K

i=1 Qai⟩
}
.385

For the current ant b, the corresponding type domain is
⋃K

i=1 Tbi and i ∈

[1, K] after the placement at a certain time, the corresponding cargo number

domain is
∑K

i=1Qbi , and its remaining space is V R
{
⟨
⋃K

i=1 Tbi ,
∑K

i=1Qbi⟩
}
.

When Tai = Tbi and Qai = Qbi ,

1○ If V R
{
⟨
⋃K

i=1 Tai ,
∑K

i=1 Qai⟩
}

>
{
⟨
⋃K

i=1 Tbi ,
∑K

i=1Qbi⟩
}

give up ant390

a, record ant b to load the chain,and set T ∗
i =

⋃K
i=1 Tbi , Q

∗
i =

∑K
i=1 Qbi ,

V R∗ = V R
{
⟨
⋃K

i=1 Tbi ,
∑K

i=1 Qbi⟩
}
.

2○ If V R
{
⟨
⋃K

i=1 Tai ,
∑K

i=1 Qai⟩
}
≤

{
⟨
⋃K

i=1 Tbi ,
∑K

i=1Qbi⟩
}
keep ant a.

3○ In particular, for the first ant c, T ∗
i =

⋃K
i=1 Tci , Q∗

i =
∑K

i=1 Qci ,

V R∗ = V R
{
⟨
⋃K

i=1 Tci ,
∑K

i=1Qci⟩
}
.395

When the state value is the same, the load chain is preferably stored

and the pruning matrix is updated. In the pruning matrix, each state value

corresponds to a current optimal load chain. The status value is only related

to the type and quantity of the loaded goods. Each state value only saves

one piece of optimal loading chain information, which effectively reduces the400

solution space of the problem.

To further clarify the processing flow and termination criteria of our pro-

posed method, we illustrate its flow diagram in Fig. 8.
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τ>M

Initialize: (1)τ=0 ,ant i,α,β, ρ;

                (2) cargo loading chain information (loading sequence, 

                      cargo placement direction and cargo coordinates).

Give up the i-th ant and release its 

allocated memory

Query and merge remain space  by left 

and right Or by front and rear rules

 Generate the selection probability 

P(τ ), the random number R(τ )

R(τ )>P(τ ) ASM strategyGSM strategy

i>m

All the cargoes are loaded OR 

the container is too full to load a box for i-th ant?

Update the pruning matrix, store 

the load chain

Update the load chain information and 

generate status value Si(T,Q)

Query the pruning matrix and get 

all state value {S(T,Q)}

Ti=T AND Qi=Q

AND VRi>VR?

No

Yes

No

No

No

No

Yes

i=i+1

Yes

τ=τ+1
Yes

Yes

i=0

Input: K: the number of cargo types;

          M: the maximum number of iterations;

          m: the maximum number of Ant;

         the size and quantity of each type of cargoes and container

Output the optimal solution in 

all the load chains
End

Begin

Fig. 8. Flow diagram of multi-strategy hybrid heuristic algorithm.

5. Computational Experiments

5.1. Experimental configurations and platform.405

Our system is composed of data storage module, planning optimization

module and simulation module. The experimental program runs on the Intel

(R) core (TM) i5-6500 CPU @ 3.20GHz processor with 8G of memory. By
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using Visual Studio C++ as the algorithm compiling environment, the load-

ing results are output to the database, and the information in the database410

is read by using unity3D 5.5.0 to simulate the container loading process. The

system framework architecture is shown in Fig. 9. The detail of these three

modules are explained as follows.

Initialize the module

Model parameter 

information

Loading chain 

information

Pruning matrix 

information

Ant i generates picking probability p and random 

number t according to the number of iterations

Read the large cabinet 

information (the cabinet 

length, width and height, 

initial point coordinates)

Read small box 

information (Length, 

width and height of the 

box)

Read the information in 

the loading chain (the 

coordinates of the lower 

left corner of the small 

box, the placement 

posture)

Dynamically generate 

each cabinet in order

Data storage 

module

Basic 

information 

submodule

Operation 

information 

submodule

Compare the size of p and t. If t > p , use 

heuristic selection method; otherwise, use ant 

colony algorithm to select goods

Update load chain information and free space set, 

generate state value

Query the pruning matrix according to the state 

value. If the current loading plan is known to be 

better than the loading plan in the pruning matrix 

or there is no such loading plan in the pruning 

matrix, update the pruning matrix and record the 

loading chain, otherwise the current round of 

loading plans will be abandoned

Information of cargo to be loaded

Planning optimization module

Simulation module

Fig. 9. Overview of system architecture.

(1) Data storage module: This module is divided into basic information

submodule and operational output submodule. The basic information sub-415

module is used to store the relevant information of containers and the cargo

items to be loaded; the operational output submodule is used to store the

output plans from the main optimization module, e.g., the information of

the loading chain and the left rear lower angle coordinate information of
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each cargo after loading.420

(2) Planning optimization module: This module is mainly used for the

key process of the proposed method. We provide the algorithm configuration

parameters in the following Table 2. Among them, ρ, α and β are from the

literature (Chen et al., 2021).

Table 2

Algorithm parameter values.

Parameter description Parameter Value

Volatile factor of pheromone ρ 0.7

Heuristic factor of pheromone α 1

Heuristic factor of the greedy rule β 3

Number of ants m 30

The maximum number of iterations M 100

(3) Simulation module: the simulation module generates corresponding425

animations for visualization. After the loading plan, including container

information, cargoes information and loading chain information are read,

Unity3D script is written to simulate the dynamic loading. An example is

illustrated in Fig. 12.

5.2. Comparison with state-of-the-art methods430

A standard test data set (Bischoff and Ratcliff, 1995) is used in our work

for performance comparison. This data set is composed of seven groups of 700

weakly heterogeneous examples. We set up eight algorithms as benchmarking

methods, which include the layered greedy algorithm (H BR) proposed by

Bischoff E E et al. in (Bischoff and Ratcliff, 1995), the parallel genetic435
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algorithm (GA GB) proposed by Gehring H et al. in (Gehring and ortfeldt,

1997), the Tabu Search Algorithm (TS BG) proposed by Bortfeldt A et al. in

(Bortfeldt and Gehring, 1998), the Hybrid Simulated Annealing Algorithm

(HSA) proposed by Parreno et al. in (Parreño et al., 2008), the Greedy

Random Adaptive Search Algorithm (GRASP) proposed by Moura A et440

al. in (Moura and Oliveira, 2005), the bee colony optimization algorithm

(SOA) proposed by Zhou Qi-Feng et al. in (Zhou and Xiang, 2017), the

multi-constraint heuristic algorithm (TS CLP) proposed by Liu Sheng et

al. in (Sheng et al., 2017), the tree search algorithm (PRTS) proposed by

Wang Yan et al. in (Wang et al., 2019), the MDCLP-S strategy proposed445

by Guillem et al. in (Bonet Filella et al., 2021), JHABC algorithm proposed

by T. Bayraktar et al. in (Bayraktar et al., 2021), and Gravitational Search

Algorithm (GSA) proposed by Rashedi et al. in (Rashedi et al., 2009).
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As shown in Table 3, it is found that: (1) when the types of cargoes

increase, the container filling rate consistently drops for all the algorithms.450

It is understandable as the diversity of item shapes inevitably lead to an

increase in the amount of remaining space, (2) compared to all other bench-

marking methods, our proposed method achieves the best average filling rate

which is 94.31% which is a significant improvement when the ceiling effect

appears when using latest advanced optimization algorithms. and (3) w.r.t455

the efficiency, i.e. average loading time, the proposed method also performs

well. When considering the filling rate above 90%, our proposed work in this

paper is the most efficient method (running time: 50.16s ) which outperforms

the second HSA algorithm (65.87s), the third TS CLP algorithm (125.3s).

Although the average running time of the GRASP algorithm proposed by460

Moura A et al. is 33.71 seconds, the filling rate is about 4.57% lower than

the result obtained by the algorithm in this paper, and the GRASP algo-

rithm only considers a single constraint condition. Here the performance of

MDCLP-S is the worst as it added a multi-drop unloading constraints. In

addition, all the variations of fill rate and running time also confirm that the465

proposed method achieves comparable results with the methods which have

the best performance.

To further analyze the variations of the proposed method due to the

stochastic characteristic like all other evolutionary algorithms, we show the

minimal and maximal loading capacity and running time in Table 4. In the470

table, the minimum, maximum and average values of the running time and

filling rate of seven groups of test cases are given respectively. It is found

that even with the worst cases with 20 box types, the algorithm still achieves
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Table 4

Some test details of Multi Strategy dynamic hybrid optimization algorithm for

weakly heterogeneous container loading.

Test case Box type
Running time(s) Fill rate(%)

Min Max Avg STD Min Max Avg STD

BR1 3 1.54 44.02 6.80 12.44 89.76 97.76 95.33 1.96

BR2 5 2.19 46.08 19.86 10.54 91.30 97.36 94.87 1.55

BR3 8 2.92 67.21 47.76 16.07 90.87 96.12 94.76 1.48

BR4 10 3.86 74.36 48.95 16.86 90.17 97.61 94.43 1.74

BR5 12 6.20 101.33 66.31 22.20 89.56 96.03 93.94 1.77

BR6 15 8.81 131.52 76.10 27.63 90.32 96.58 93.52 1.74

BR7 20 12.09 150.60 85.37 31.21 88.64 95.71 93.36 1.99

very high filling rate with an acceptable running time frame.

In the Table 4, the standard variations of fill rate on all test cases range475

from 1.48 to 1.99 and these indicate a great convergence of the proposed

method. In addition, the standard deviations of the running time increase

from 12.44 in the simplest test case to 31.21 in the most complicated case.

This trend reflects an objective observation that the time of convergence

varies in more complicated cases.Overall, our proposed algorithm can guar-480

antee both the effectiveness and efficiency.

5.3. Ablation study

To further evaluate and prove the effectiveness of the proposed algorithm,

we conduct two ablation studies in our experiment. As depicted in Fig. 10,

we compare the convergence of the GSM, ASM and our proposed model.485
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In the experiment, we run each algorithm with 10 times and plot the curves

with average and standard deviation across iterations. Where, the upper and

lower boundaries represent the ’minimal’ and ’maximal’ filling rates while the

centre point represents the average filling rates of the 10 independent running

times on each method. It is observed that the GSM method converges to490

local optimal solutions with small variations. While the ASM converges

much slower with larger variations. Even after 100 iterations, it still has

not reached the converged performance. In contrast, our proposed method

combines the advantages of these two methods so that the method has strong

exploration capability and ensures better convergence in limited iterations.495

These convergence curves prove both the effectiveness and efficiency of our

method. As another element in our work, we design a pruning matrix to

improve the convergence speed. To prove the importance of the pruning

matrix strategy, we have made another ablation study by using the proposed

method with and without the pruning matrix. The results are shown in500

Table 5. It can be observed that the pruning matrix plays a crucial role on

improving the efficiency of our method.

Table 5

Comparison of filling rate and time of proposed algorithms with and without the

pruning matrix.

Proposed
Fill rate(%) Time(s)

BR1 BR2 BR3 BR4 BR5 BR6 BR7 Avg Avg

with PMS 95.33 94.87 94.76 94.43 93.94 93.52 93.36 94.31 50.16

w/o PMS 95.29 94.85 94.75 94.43 93.90 93.53 93.31 94.29 121.63
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Fig. 10. Convergence curves of the three methods.

5.4. Case study

We further deploy our proposed method in a real business case for the

logistic department of a bicycle factory in Tianjin, China. In the department,505

worldwide order requests are received to order different types of bicycles and

ask for corresponding logistic plans. There are two main user requirements

from the client: (1) replying customer requests in a timely response and (2)

providing shipping animation for container loaders. In this case study, the

container size is 40 feet (the size is 12.024m×2.35m×2.69m) and 11 different510

item types are selected for shipping. The basic information of these types is

shown in Table 6.

To satisfy the first user requirement, a website is built to reply customer

requests by using the optimization engine driven by our proposed method.

A screenshot of the website in production is illustrated in Fig. 11. When a515
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Table 6

Basic information of shipping items.

Number Types Length(m) Width(m) Height(m) Volume(m3)

1 HB02 1.2 0.26 0.48 0.1497

2 HB03 1.2 0.47 0.56 0.3158

3 HB04 0.69 0.31 0.58 0.1240

4 HB07 0.75 0.185 0.87 0.1207

5 HB09 0.86 0.19 0.77 0.1258

6 HE01 0.66 0.185 0.87 0.1062

7 HE03 0.66 0.3 0.6 0.1188

8 HE04 1.1 0.215 0.65 0.1537

9 HE07 0.87 0.36 0.73 0.2286

10 HE08 1.31 0.205 0.72 0.1933

11 HE10 1.4 0.2 0.74 0.2072

customer sends requests with their shopping combinations, our engine pro-

vides the optimized shipping options so that the customer has their flexibility

to make better order combinations and understand their shipping cost. To

satisfy the second user requirement, we uses Unity-3D to build an animation

to guide shipping loaders when loading items. This is illustrated in Fig. 12.520

Here, we use four programs, which include three, five, six and seven item

types respectively, to show the loading sequences.

In the evaluation stage, we compare the deployment performance of our

system with the current onsite loading practices. The algorithm is used to

calculate the above mentioned four loading programs, with three, five, six,525
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Fig. 11. The proposed algorithm has been deployed as the engine for arranging

customer shipping plans.

seven shipping items respectively. From the comparison data in Table 7, it

can be seen that the proposed multi-strategy heuristic algorithm improves

the filling rate greatly compared to the current operation in our client. The

improvement of the loading rate increases 5-10% based on various number

of shipping item types. In addition, all of these are achieved in a timely530

manner, i.e. 2.92 seconds for three items, 3.75 seconds for five items, 9.86

for six items and 11.04 for seven items.

6. Concluding remarks

In this paper, a multi strategy dynamic hybrid heuristic algorithm is pro-

posed to solve the single container weakly heterogeneous problem. Three535

space greedy cascade method and three space ant colony cascade method are

integrated seemly based on a probabilistic selection function. In addition, a
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Table 7

Loading scheme information.

No./ Type
Program

1 2 3 4

Loading OnSite Ours OnSite Ours OnSite Ours OnSite Ours

1/HB02 150 144 - - - - 46 55

2/HB03 - - 110 120 - - - -

3/HB04 100 133 8 12 99 109 91 98

4/HB07 250 254 - - 66 72 66 72

5/HB09 - - 91 100 - - - -

6/HE01 - - 61 65 - - - -

7/HE03 - - - - 85 96 78 84

8/HE04 - - 61 70 - - - -

9/HE07 - - - - 68 72 48 54

10/HE08 - - - - 54 62 61 57

11/HE10 - - - - 26 30 15 27

Count 500 531 331 367 398 441 405 442

LR (%) 86.58 91.48 83.91 92.69 82.15 90.88 81.57 91.19

Time(s) - 2.92 - 3.75 - 9.86 - 11.04

37



CargoⅠ
CargoⅡ

CargoⅢ

(a) three types (b) five types

(c) six types (d) seven types

Fig. 12. Several types of cargoes loading renderings in 40HC.

tree pruning algorithm is proposed to further improve the efficiency of solving

the problem. During the loading process, each state value is preferentially

stored and the pruning matrix is updated. Compared with the running re-540

sults of general data set and public data set, the algorithm in this paper has

better competitiveness under the premise of ensuring the packing rate. A

case study from a client is used to further support the outstanding perfor-

mance of the proposed algorithm. In future work, we will further extend the

algorithm for strong heterogeneous problem and improve the efficiency when545

dealing with large number of item types, e.g., more than 30 types in real
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business logistic planning.
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