1.4974142.pdf (376.56 kB)
Download fileMultiple scattering in random dispersions of spherical scatterers: effects of shear-acoustic interactions
journal contribution
posted on 2017-01-23, 12:58 authored by Valerie PinfieldValerie Pinfield, Derek Michael ForresterThe propagation of acoustic waves through a suspension of spherical particles in a viscous liquid is investigated, through application of a multiple scattering model. The model is based on the multiple scattering formulation of Luppé, Conoir and Norris (J. Acoust. Soc. Am. 2012, 131, 1113) which incorporated the effects of thermal and shear wave modes on propagation of the acoustic wave mode. Here, the model is simplified for the case of solid particles in a liquid, in which shear waves make a significant contribution to the effective properties. The relevant scattering coefficients and effective wavenumber are derived in analytical form. The results of calculations are presented for a system of silica particles in water, illustrating the dependence of the scattering coefficients, effective wavenumber, speed, attenuation on particle size and frequency. The results demonstrate what has already been shown experimentally; that the shear-mediated processes have a very significant effect on the effective attenuation of acoustic waves, especially as the concentration of particles increases.
Funding
The work was funded by the EPSRC in the UK, Grant No. EP/L018780/1.
History
School
- Aeronautical, Automotive, Chemical and Materials Engineering
Department
- Chemical Engineering