The propagation of acoustic waves through a suspension of spherical particles in a viscous liquid is investigated, through application of a multiple scattering model. The model is based on the multiple scattering formulation of Luppé, Conoir and Norris (J. Acoust. Soc. Am. 2012, 131, 1113) which incorporated the effects of thermal and shear wave modes on propagation of the acoustic wave mode. Here, the model is simplified for the case of solid particles in a liquid, in which shear waves make a significant contribution to the effective properties. The relevant scattering coefficients and effective wavenumber are derived in analytical form. The results of calculations are presented for a system of silica particles in water, illustrating the dependence of the scattering coefficients, effective wavenumber, speed, attenuation on particle size and frequency. The results demonstrate what has already been shown experimentally; that the shear-mediated processes have a very significant effect on the effective attenuation of acoustic waves, especially as the concentration of particles increases.
Funding
The work was funded by the EPSRC in the UK, Grant
No. EP/L018780/1.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
Journal of the Acoustical Society of America
Volume
141
Issue
1
Pages
649-660
Citation
PINFIELD, V.J. and FORRESTER, M., 2017. Multiple scattering in random dispersions of spherical scatterers: effects of shear-acoustic interactions. Journal of the Acoustical Society of America, 141 (1), pp.649-660.
Publisher
Acoustical Society of America
Version
VoR (Version of Record)
Publisher statement
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/