1.4974142.pdf (376.56 kB)
Download file

Multiple scattering in random dispersions of spherical scatterers: effects of shear-acoustic interactions

Download (376.56 kB)
journal contribution
posted on 23.01.2017, 12:58 by Valerie PinfieldValerie Pinfield, Derek Michael Forrester
The propagation of acoustic waves through a suspension of spherical particles in a viscous liquid is investigated, through application of a multiple scattering model. The model is based on the multiple scattering formulation of Luppé, Conoir and Norris (J. Acoust. Soc. Am. 2012, 131, 1113) which incorporated the effects of thermal and shear wave modes on propagation of the acoustic wave mode. Here, the model is simplified for the case of solid particles in a liquid, in which shear waves make a significant contribution to the effective properties. The relevant scattering coefficients and effective wavenumber are derived in analytical form. The results of calculations are presented for a system of silica particles in water, illustrating the dependence of the scattering coefficients, effective wavenumber, speed, attenuation on particle size and frequency. The results demonstrate what has already been shown experimentally; that the shear-mediated processes have a very significant effect on the effective attenuation of acoustic waves, especially as the concentration of particles increases.

Funding

The work was funded by the EPSRC in the UK, Grant No. EP/L018780/1.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Journal of the Acoustical Society of America

Volume

141

Issue

1

Pages

649-660

Citation

PINFIELD, V.J. and FORRESTER, M., 2017. Multiple scattering in random dispersions of spherical scatterers: effects of shear-acoustic interactions. Journal of the Acoustical Society of America, 141 (1), pp.649-660.

Publisher

Acoustical Society of America

Version

VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

20/12/2016

Publication date

2017-01-31

Notes

© 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1121/1.4974142]

ISSN

1520-8524

Language

en

Usage metrics

Keywords

Licence

Exports