Loughborough University
Browse
- No file added yet -

Non-invasive estimation of muscle fibre size from high-density electromyography

Download (1.52 MB)
journal contribution
posted on 2023-05-16, 13:44 authored by Andrea Casolo, Sumiaki Maeo, Tom BalshawTom Balshaw, Marcel B. Lanza, Neil MartinNeil Martin, Stefano Nuccio, Tatiana Moro, Antonio Paoli, Francesco Felici, Nicola Maffulli, Bjoern Eskofier, Thomas M. Kinfe, Jonathan FollandJonathan Folland, Dario Farina, Alessandro Del Vecchio

Because of the biophysical relation between muscle fibre diameter and the propagation velocity of action potentials along the muscle fibres, motor unit conduction velocity could be a non-invasive index of muscle fibre size in humans. However, the relation between motor unit conduction velocity and fibre size has been only assessed indirectly in animal models and in human patients with invasive intramuscular EMG recordings, or it has been mathematically derived from computer simulations. By combining advanced non-invasive techniques to record motor unit activity in vivo, i.e. high-density surface EMG, with the gold standard technique for muscle tissue sampling, i.e. muscle biopsy, here we investigated the relation between the conduction velocity of populations of motor units identified from the biceps brachii muscle, and muscle fibre diameter. We demonstrate the possibility of predicting muscle fibre diameter (R2 = 0.66) and cross-sectional area (R2 = 0.65) from conduction velocity estimates with low systematic bias (∼2% and ∼4% respectively) and a relatively low margin of individual error (∼8% and ∼16%, respectively). The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling. The non-invasive nature of high-density surface EMG for the assessment of muscle fibre size may be useful in studies monitoring child development, ageing, space and exercise physiology, although the applicability and validity of the proposed methodology need to be more directly assessed in these specific populations by future studies. (Figure presented.). Key points: Because of the biophysical relation between muscle fibre size and the propagation velocity of action potentials along the sarcolemma, motor unit conduction velocity could represent a potential non-invasive candidate for estimating muscle fibre size in vivo. This relation has been previously assessed in animal models and humans with invasive techniques, or it has been mathematically derived from simulations. By combining high-density surface EMG with muscle biopsy, here we explored the relation between the conduction velocity of populations of motor units and muscle fibre size in healthy individuals. Our results confirmed that motor unit conduction velocity can be considered as a novel biomarker of fibre size, which can be adopted to predict muscle fibre diameter and cross-sectional area with low systematic bias and margin of individual error. The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling.

Funding

Central nervous system and skeletal muscle adaptation associated with strength training

Japan Society for the Promotion of Science

Find out more...

History

School

  • Sport, Exercise and Health Sciences

Published in

The Journal of Physiology

Volume

601

Issue

10

Pages

1831-1850

Publisher

Wiley

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Wiley under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2023-03-13

Publication date

2023-03-30

Copyright date

2023

ISSN

0022-3751

eISSN

1469-7793

Language

  • en

Depositor

Prof Jonathan Folland. Deposit date: 25 April 2023

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC