This paper proposes a new nonlinear composite bilateral control framework for n-degree-of-freedom (n-DOF) teleoperation systems with external disturbances. Different with the existing methods which usually regard the dynamics of the master and slave robots as linear impedance models, the proposed control framework fully considers the nonlinear dynamics of the n-DOF teleoperation systems. Central to the proposed framework is the utilization of nonlinear disturbance observers for estimating the disturbances in master and slave robot systems. The nonlinear composite bilateral controller is constructed by incorporating the disturbance estimations into the nonlinear feedback linearization controller. The proposed control method guarantees satisfactory position tracking performance and desired remote force haptic simultaneously for the n-DOF teleoperation systems with external disturbances. The effectiveness of the proposed control framework is validated by its applications on 2-DOF teleoperation systems.
Funding
This work was supported by National Natural Science Foundation of China (Grant Nos.
61473080, 61573099, 61633003, 61750110525), Fundamental Research Funds for Central Universities (Grant No. 2242016R30011), Graduate Innovation Program of Jiangsu Province (Grant No. KYLX15-0114), Scientific Research
Foundation of Graduate School of Southeast University (Grant No. YBJJ1561) and Open Project Program of Ministry of Education Key Laboratory of Measurement and Control of CSE (Grant No. MCCSE2017A01). Zhenhua ZHAO would also like to thank Chinese Scholarship Council and Newton Fund by British Council for supporting his study in the UK.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Aeronautical and Automotive Engineering
Published in
Science China Information Sciences
Volume
61
Issue
7
Citation
ZHAO, Z. ... et al, 2018. Nonlinear composite bilateral control framework for n-DOF teleoperation systems with disturbances. Science China Information Sciences, 61 (7), 70221.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/