Loughborough University
Browse

Numerical study of inhomogeneous deformation of gas diffusion layers on proton exchange membrane fuel cells performance

Download (973.7 kB)
journal contribution
posted on 2021-11-26, 10:11 authored by Gaojian Chen, Qian Xu, Jin Xuan, Jianguo Liu, Qian Fu, Weidong Shi, Huaneng Su, Lei Xing
Gas diffusion layers play a critical role in the operation of proton exchange membrane fuel cells. As the most compressible component in proton exchange membrane fuel cells, the non-uniform deformation mainly occurs on the interface between bipolar plates and gas diffusion layers caused by the special channel-rib geometry of the flow field, which results in a non-uniform variation of physical properties of gas diffusion layers, such as porosity, effective electrical conductivity, and gas diffusivity, consequently affects the cell performance. In this paper, a two-dimensional, across-the-channel, multi-physics and two-phase flow model based on the spherical agglomerate assumption is developed to investigate the complicated relationships between the non-uniform deformation and variation of physical properties of the gas diffusion layers, as well as the cell performance. A modified diffusion coefficient is introduced to describe the effect of the variation of species concentration on the effective diffusion coefficient based on the Bruggeman formula. Simulation results show that an optimal cell performance can be achieved by balancing the variation of porosity, effective electrical conductivity, and effective gas diffusion coefficient with respect to different degrees of deformation of gas diffusion layers.

Funding

National Natural Science Foundation of China (21978118, 21878129, 51676092)

China Postdoctoral Science Foundation (No. 2019M 661749)

State Key Laboratory of Engine at Tianjin University (No. K2020-14)

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Journal of Energy Storage

Volume

44

Issue

Part B

Publisher

Elsevier

Version

  • AM (Accepted Manuscript)

Rights holder

© Elsevier

Publisher statement

This paper was accepted for publication in the journal Journal of Energy Storage and the definitive published version is available at https://doi.org/10.1016/j.est.2021.103486.

Acceptance date

2021-10-24

Publication date

2021-11-05

Copyright date

2021

ISSN

2352-152X

Language

  • en

Depositor

Prof Jin Xuan. Deposit date: 26 November 2021

Article number

103486

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC