Loughborough University
Browse

On the correspondence principle : implications from a study of the nonlinear dynamics of a macroscopic quantum device

Download (935.94 kB)
journal contribution
posted on 2009-01-08, 14:28 authored by Mark Everitt
The recovery of classical nonlinear and chaotic dynamics from quantum systems has long been a subject of interest. Furthermore, recent work indicates that quantum chaos may well be significant in quantum information processing. In this paper, we discuss the quantum to classical crossover of a superconducting quantum interference device (SQUID) ring. Such devices comprise a thick superconducting loop enclosing a Josephson weak link and are currently strong candidates for many applications in quantum technologies. The weak link brings with it a nonlinearity such that semiclassical models of this system can exhibit nonlinear and chaotic dynamics. For many similar systems an application of the correspondence principle together with the inclusion of environmental degrees of freedom through a quantum trajectories approach can be used to effectively recover classical dynamics. Here we show (i) that the standard expression of the correspondence principle is incompatible with the ring Hamiltonian and we present a more pragmatic and general expression which finds application here and (ii) that practical limitations to circuit parameters of the SQUID ring prevent arbitrarily accurate recovery of classical nonlinear dynamics.

History

School

  • Science

Department

  • Physics

Citation

EVERITT, M.J., 2009. On the correspondence principle : implications from a study of the nonlinear dynamics of a macroscopic quantum device. New Journal of Physics, 11, 013014, (15 pp.)

Publisher

© IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

Version

  • VoR (Version of Record)

Publication date

2009

Notes

This article was published in the journal, New Journal of Physics, and is also available at: http://www.njp.org/

ISSN

1367-2630

Language

  • en

Usage metrics

    Loughborough Publications

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC