This paper presents a comprehensive study on the open-hole quasi-static tensile and tension-tension fatigue behaviour of an orthogonal and an angle-interlock 3D woven carbon/epoxy composite. The full-field strain distribution during quasi-static tests was characterised using digital image correlation (DIC), and the fatigue damage behaviour was monitored using an infra-red camera. The notched tensile strength was less than 17% lower than the un-notched tensile strength and not very sensitive
to the notch size. The fatigue specimens were loaded with maximum stress of about 60% of the ultimate failure stress and no complete fracture occurred after 5,000,000 cycles. The residual fatigue strength was also found to be similar to the quasi-static tensile strength in both weaves. The surface
crack initiation and progression during fatigue loading was identified using thermoelastic stress
analysis which revealed that the orthogonal weave had larger surface damage area than the
angle-interlock weave.
Funding
This research project is supported by the Aeronautical and Automotive Engineering Department of Loughborough University and M.Wright & Sons Ltd.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Aeronautical and Automotive Engineering
Published in
Composite Structures
Volume
131
Pages
765 - 774
Citation
DAI, S. ...et al., 2015. Open hole quasi-static and fatigue characterisation of 3D woven composites. Composite Structures, 131, pp.765-774.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/
Publication date
2015-06-23
Notes
This paper was accepted for publication in the journal Composite Structures and the definitive published version is available at http://dx.doi.org/10.1016/j.compstruct.2015.06.032