Loughborough University
Browse
- No file added yet -

Optimal shape of an underwater moving bottom generating surface waves ruled by a forced Korteweg-de Vries equation

Download (650.42 kB)
journal contribution
posted on 2018-10-02, 14:48 authored by Jeremy Dalphin, Ricardo Lopes-BarrosRicardo Lopes-Barros
It is well known since Wu & Wu (1982) that a forcing disturbance moving steadily with a transcritical velocity in shallow water can generate, continuously and periodically, a succession of solitary waves propagating ahead of the disturbance in procession. One possible new application of this phenomenon could very well be surfing competitions, where in a controlled environment, such as a pool, waves can be generated with the use of a translating bottom. In this paper, we use the forced Korteweg-de Vries equation to investigate the shape of the moving body capable of generating the highest first upstream-progressing solitary wave. To do so, we study the following optimization problem: maximizing the total energy of the system over the set of non-negative square-integrable bottoms, with uniformly bounded norms and compact supports. We establish analytically the existence of a maximizer saturating the norm constraint, derive the gradient of the functional, and then implement numerically an optimization algorithm yielding the desired optimal shape.

Funding

R. B. acknowledges the support of Science Foundation Ireland under grant 12/IA/1683.

History

School

  • Science

Department

  • Mathematical Sciences

Published in

Journal of Optimization Theory and Applications

Citation

DALPHIN, J. and BAROS, R., 2018. Optimal shape of an underwater moving bottom generating surface waves ruled by a forced Korteweg-de Vries equation. Journal of Optimization Theory and Applications, 180 (2), pp.574–607.

Publisher

© Springer Verlag

Version

  • AM (Accepted Manuscript)

Publisher statement

This paper was accepted for publication in the journal Journal of Optimization Theory and Applications and the definitive published version is available at https://doi.org/10.1007/s10957-018-1400-8

Acceptance date

2018-09-18

Publication date

2018-02-03

Copyright date

2018

ISSN

0022-3239

eISSN

1573-2878

Language

  • en