In this work, we propose a novel hybrid communication network that utilizes both a Full-Duplex (FD) Decode-and-Forward (DF) relay and an Intelligent Reflecting Surface (IRS) to support data transmission over wireless channels. We design the reflecting coefficients at the IRS to maximize the minimum achievable rate of the two hops for the proposed hybrid network. To that end, we utilize a change-of-variables with Semi-Definite Relaxation (SDR) approach to overcome the non-concave objective function and the non-convex optimization constraints. Our results demonstrate that the proposed hybrid IRS with FD relay scheme is able to achieve a significant performance gain over both the hybrid IRS with Half-Duplex (HD) relay as well as the IRS-only scheme, given that the self-interference at the relay is sufficiently suppressed.
Funding
Communications Signal Processing Based Solutions for Massive Machine-to-Machine Networks (M3NETs)
Engineering and Physical Sciences Research Council