Loughborough University
Browse

Orientation-field models for polycrystalline solidification: grain coarsening and complex growth forms

Download (1.01 MB)
journal contribution
posted on 2017-11-03, 09:31 authored by Balint Korbuly, Tamas Pusztai, Gyula TothGyula Toth, Herve Henry, Mathis Plapp, Laszlo Granasy
We compare two versions of the phase-field theory for polycrystalline solidification, both relying on the concept of orientation fields: one by Kobayashi et al. [Physica D 140 (2000) 141] and the other by Henry et al. [Phys. Rev. B 86 (2012) 054117]. Setting the model parameters so that the grain boundary energies and the time scale of grain growth are comparable in the two models, we first study the grain coarsening process including the limiting grain size distribution, and compare the results to those from experiments on thin films, to the models of Hillert, and Mullins, and to predictions by multiphase-field theories. Next, following earlier work by Gránásy et al. [Phys. Rev. Lett. 88 (2002) 206105; Phys. Rev. E 72 (2005) 011605], we extend the orientation field to the liquid state, where the orientation field is made to fluctuate in time and space, and employ the model for describing of multi-dendritic solidification, and polycrystalline growth, including the formation of “dizzy” dendrites disordered via the interaction with foreign particles.

Funding

This work has been supported by the Hungarian-French Bilateral Scientific and Technological Innovation Fund under Grant No. TÉT_12_FR-2-2014-0034; the National Agency for Research, Development, and Innovation (NKFIH) , Hungary under contract No. OTKA-K-115959; and by the EU FP7 Collaborative Project “EXOMET” (contract no. NMP-LA-2012-280421, co-funded by ESA).

History

School

  • Science

Department

  • Mathematical Sciences

Published in

Journal of Crystal Growth

Volume

457

Pages

32 - 37

Citation

KORBULY, B. ...et al., 2017. Orientation-field models for polycrystalline solidification: grain coarsening and complex growth forms. Journal of Crystal Growth, 457, pp. 32-37.

Publisher

© Elsevier

Version

  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date

2017

Notes

This paper was accepted for publication in the journal Journal of Crystal Growth and the definitive published version is available at https://doi.org/10.1016/j.jcrysgro.2016.06.040

ISSN

0022-0248

Language

  • en