Loughborough University
Browse
Accepted version.pdf (1.37 MB)

Oxygen transport in proton exchange membrane fuel cells with metal foam flow fields

Download (1.37 MB)
journal contribution
posted on 2022-03-04, 12:01 authored by Mengshan Suo, Kai Sun, Rui Chen, Zhizhao Che, Zhen Zeng, Qifeng Li, Xingxiao Tao, Tianyou Wang
Metal foam flow fields have shown great potential in improving the performance of proton exchange membrane (PEM) fuel cells, while their effect on the oxygen transport process remains inadequately understood. In this study, oxygen transport in metal foam flow fields (under zero-humidity operating conditions) is simulated by using a three-dimensional multi-species lattice Boltzmann model. Comparison is done between the metal foam flow field and the conventional channel-rib flow field, and parametric studies are conducted on the metal foam porosity, pore density, and compression ratio. Results show that the metal foam flow field enhances mass transfer of oxygen to the catalyst layer and improves the oxygen distribution homogeneity. Within the range of parameters considered, decrease in the metal foam porosity yields nonmonotonic variation of the mass transfer rate of oxygen to the catalyst layer, which increases at high inlet velocities (higher than 2 m/s) but decreases at low inlet velocities (less than 2 m/s). The increase in metal foam pore density and compression ratio leads to enhanced mass transfer of oxygen, which becomes increasingly prominent at high inlet velocity. The results of this study could be insightful for the implementation of metal foam flow fields in PEM fuel cells.

Funding

National Natural Science Foundation of China (No. 51920105010 and No. 51921004)

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Aeronautical and Automotive Engineering

Published in

Journal of Power Sources

Volume

521

Publisher

Elsevier BV

Version

  • AM (Accepted Manuscript)

Rights holder

© Elsevier

Publisher statement

This paper was accepted for publication in the journal Journal of Power Sources and the definitive published version is available at https://doi.org/10.1016/j.jpowsour.2021.230937.

Acceptance date

2021-12-16

Publication date

2021-12-22

Copyright date

2021

ISSN

0378-7753

eISSN

1873-2755

Language

  • en

Depositor

Prof Rui Chen. Deposit date: 3 March 2022

Article number

230937

Usage metrics

    Loughborough Publications

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC