Passively generated big data for micro-mobility: State-of-the-art and future research directions
The sharp rise in popularity of micro-mobility poses significant challenges in terms of ensuring its safety, addressing its social impacts, mitigating its environmental effects, and designing its systems. Meanwhile, micro-mobility is characterised by its richness in passively generated big data that has considerable potential to address the challenges. Despite an increase in recent literature utilising passively generated micro-mobility data, knowledge and findings are fragmented, limiting the value of the data collected. To fill this gap, this article provides a timely review of how micro-mobility research and practice have exploited passively generated big data and its applications to address major challenges of micro-mobility. Despite its clear advantages in coverage, resolution, and the removal of human errors, passively generated big data needs to be handled with consideration of bias, inaccuracies, and privacy concerns. The paper also highlights areas requiring further research and provides new insights for safe, efficient, sustainable, and equitable micro-mobility.
History
School
- Architecture, Building and Civil Engineering
Published in
Transportation Research Part D: Transport and EnvironmentVolume
121Publisher
ElsevierVersion
- VoR (Version of Record)
Rights holder
© The AuthorsPublisher statement
This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/Acceptance date
2023-05-21Publication date
2023-06-12Copyright date
2023ISSN
1361-9209eISSN
1879-2340Publisher version
Language
- en