The descriptional complexity of basic operations on regular languages using 1-limited automata, a restricted version of one-tape Turing machines, is investigated. When simulating operations on deterministic finite automata with deterministic 1-limited automata, the sizes of the resulting devices are polynomial in the sizes of the simulated machines. The situation is different when the operations are applied to deterministic 1-limited automata: while for boolean operations the simulations remain polynomial, for product, star, and reversal they cost exponential in size. The costs for product and star do not reduce if the given machines are sweeping two-way deterministic finite automata. These bounds are tight.
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.