posted on 2015-03-27, 14:20authored byKeddon Powell, Ali N. Saleemi, Chris Rielly, Zoltan Nagy
In this paper a novel concept of periodic mixed suspension mixed product removal (PMSMPR) crystallization process is demonstrated. An integrated array of process analytical technologies (PAT), based on attenuated total reflectance ultra violet/visible spectroscopy (ATR-UV/vis), focused beam reflectance measurement (FBRM), particle vision microscopy (PVM) and Raman spectroscopy, and in-house developed crystallization process informatics system software (CryPRINS) were used to monitor the periodic steady-state flow crystallization of paracetamol (PCM). Periodic steady-state is a new concept defined as a state of a system that maintains itself despite transitory effects caused by periodic, but controlled disruptions (state of controlled operation). This work also illustrates the concept of “state of controlled operation” (SCO) instead of “steady-state operation” as a state that can characterize continuous (periodic) operation. The PMSMPR was configured as either a single- or two-stage unit and operated for up to 11
residence times without blockage or encrustation problems. The number of PMSMPR stages,
seed characteristics (size, shape and distribution), and use of recycle stream were the main
variables that influenced the periodic operation, significantly affecting the extent of secondary
nucleation and growth. The results further illustrate the use of PAT and information system tools
together to determine when the periodic operation reaches a state of controlled operation
(periodic steady-state). These tools provided a better understanding of the variables and
operating procedures influencing the periodic operation.
Funding
The authors would like to thank the EPSRC and the Centre for Continuous Innovation in Continuous Manufacturing and Crystallization (CMAC) for the financial support of this work and the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. [280106-CrySys] (for equipment and financial support).
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
Chemical Engineering and Processing: Process Intensification
Citation
POWELL, K.A. ... et al, 2015. Periodic steady-state flow crystallization of a pharmaceutical drug using MSMPR operation. Chemical Engineering and Processing: Process Intensification, 97, pp.195-212.
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: http://creativecommons.org/licenses/ by/4.0/
Publication date
2015
Notes
This is an open access article published by Elsevier under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).