Loughborough University
Browse
Experimental Physiology - 2023 - Wright - Peripheral sensory function in non‐freezing cold injury patients and matched.pdf (764.79 kB)

Peripheral sensory function in non‐freezing cold injury patients and matched controls

Download (764.79 kB)
journal contribution
posted on 2023-03-02, 15:40 authored by Jennifer Wright, Heather Massey, Sarah Hollis, Tom Vale, David LH Bennett, Matthew MaleyMatthew Maley, Hugh Montgomery, Michael Tipton, Clare Eglin

The aim of this study was to compare peripheral sensory neural function of individuals with non-freezing cold injury (NFCI) with matched controls (without NFCI) with either similar (COLD) or minimal previous cold exposure (CON). Thirteen individuals with chronic NFCI in their feet were matched with the control groups for sex, age, race, fitness, body mass index and foot volume. All undertook quantitative sensory testing (QST) on the foot. Intraepidermal nerve fibre density (IENFD) was assessed 10 cm above the lateral malleolus in nine NFCI and 12 COLD participants. Warm detection threshold was higher at the great toe in NFCI than COLD (NFCI 45.93 (4.71)°C vs. COLD 43.44 (2.72)°C, P = 0.046), but was non-significantly different from CON (CON 43.92 (5.01)°C, P = 0.295). Mechanical detection threshold on the dorsum of the foot was higher in NFCI (23.61 (33.59) mN) than in CON (3.83 (3.69) mN, P = 0.003), but was non-significantly different from COLD (10.49 (5.76) mN, P > 0.999). Remaining QST measures did not differ significantly between groups. IENFD was lower in NFCI than COLD (NFCI 8.47 (2.36) fibre/mm2 vs. COLD 11.93 (4.04) fibre/mm2, P = 0.020). Elevated warm and mechanical detection thresholds may indicate hyposensitivity to sensory stimuli in the injured foot for individuals with NFCI and may be due to reduced innervation given the reduction in IENFD. Longitudinal studies are required to identify the progression of sensory neuropathy from the formation of injury to its resolution, with appropriate control groups employed.

Funding

Department of Army Health and Performance, British Army

History

School

  • Design and Creative Arts

Department

  • Design

Published in

Experimental Physiology

Volume

108

Issue

1

Pages

438-447

Publisher

Wiley

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Wiley under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2022-12-20

Publication date

2023-02-20

Copyright date

2022

ISSN

0958-0670

eISSN

1469-445X

Language

  • en

Depositor

Dr Matthew Maley. Deposit date: 21 February 2023

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC