In pharmaceuticals manufacturing, the conversion of conventional batch crystallisations to continuous mode has the potential for intensified, compact operation and more consistent production via quality-by-design. A pragmatic conversion approach is to utilise existing stirred tank batch crystallisers as continuous mixed-suspension mixed-product removal (MSMPR) stages. In this study, a rigorous and general mathematical model is developed for a pharmaceutical crystallisation process under continuous MSMPR operation. In the proposed changeover from batch to continuous operation, concentration control (C-control), which has been well accepted in batch crystallisation operation, is further extended to facilitate the convenient design of the steady-state operating point of a continuous MSMPR crystalliser; an objective is to ensure that the start-up procedures and on-line control conditions fall within the design-space of the original batch operation. Both single-stage and cascaded two-stage MSMPR crystallisers were investigated and compared to the conventional batch operation. It was observed that despite the production of a smaller number-based mean crystal size, the proposed continuous MSMPR operation achieved higher production capacity with shorter mean residence time and comparable product yield to the batch operation. Lastly, the robustness of C-control strategy against uncertainties in crystallisation kinetics was also demonstrated for the proposed continuous MSMPR operation.
Funding
The authors would like to acknowledge financial support from
the UK EPSRC, AstraZeneca and GSK. This work was performed as part of the ‘Intelligent
Decision Support and Control Technologies for Continuous
Manufacturing and Crystallisation of Pharmaceuticals and Fine
Chemicals’ (ICT-CMAC) Project [grant no. EP/K014250/1].
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Published in
Chemical Engineering and Processing: Process Intensification
Volume
89
Pages
41 - 53
Citation
SU, Q., NAGY, Z.K. and RIELLY, C.D., 2015. Pharmaceutical crystallisation processes from batch to continuous operation using MSMPR stages: modelling, design, and control. Chemical Engineering and Processing: Process Intensification, 89, pp. 41 - 53.
This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/
Publication date
2015-01-08
Notes
This is an Open Access Article. It is published by Elsevier as Open Access at: http://dx.doi.org/10.1016/j.cep.2015.01.001