Phase-field modeling of polycrystalline solidification, from needle crystals to spherulites: a review
journal contribution
posted on 2017-11-06, 11:42authored byLaszlo Granasy, Laszlo Ratkai, Attila Szallas, Balint Korbuly, Gyula TothGyula Toth, Laszlo Kornyei, Tamas Pusztai
Advances in the orientation-field-based phase-field (PF) models made in the past are reviewed.
The models applied incorporate homogeneous and heterogeneous nucleation of growth centers
and several mechanisms to form new grains at the perimeter of growing crystals, a phenomenon
termed growth front nucleation. Examples for PF modeling of such complex polycrystalline
structures are shown as impinging symmetric dendrites, polycrystalline growth forms (ranging
from disordered dendrites to spherulitic patterns), and various eutectic structures, including
spiraling two-phase dendrites. Simulations exploring possible control of solidification patterns
in thin films via external fields, confined geometry, particle additives, scratching/piercing the
films, etc. are also displayed. Advantages, problems, and possible solutions associated with
quantitative PF simulations are discussed briefly.
Funding
This review includes techniques developed in the framework of the EU FP7 Collaborative Project 'EXOMET' (Contract No. NMP-LA-2012-280421, co-funded by ESA) and ESA MAP/PECS projects 'MAGNEPHAS III' (Contract No. 4000105034/11/NL/KML) and 'GRADECET' (Contract No.
4000104330/11/NL/KML).
History
School
Science
Department
Mathematical Sciences
Published in
Metallurgical and Materials Transactions A
Volume
45
Issue
4
Pages
1694 - 1719
Citation
GRANASY, L. ... et al., 2014. Phase-field modeling of polycrystalline solidification, from needle crystals to spherulites: a review. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 45 (4), pp.1694-1719.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/