posted on 2017-11-03, 11:27authored byGyula TothGyula Toth, Juri Selvag, Bjorn Kvamme
In this paper we use a phenomenological continuum theory of the Ginzburg-Landau
type to address emulsion formation in water/light hydrocarbon/asphaltene systems.
Based on the results of recent molecular dynamics simulations, we first calibrate the
model parameters and show, that the theory produces a reasonable equation of state.
Next, the coalescence of oil droplets is studied by a convection-diffusion dynamics as
a function of both the surface coverage and the viscosity contrast between the as-
phaltene and the bulk liquids. We show, that, besides the traditional thermodynamic
interpretation of emulsion formation, the timescale of drop coalescence can be con-
trolled independently from the interfacial tension drop, which offers an alternative,
solely kinetic driven mechanism of emulsion formation.
Funding
This work has been supported by the VISTA basic research programme project No. 6359
"Surfactants for water/CO2/hydrocarbon emulsions for combined CO2 storage and utilization" of the Norwegian Academy of Science and Letters and the Statoil.
History
School
Science
Department
Mathematical Sciences
Published in
Energy & Fuels
Volume
31
Issue
2
Pages
1218 - 1225
Citation
TOTH, G.I., SELVAG, J. and KVAMME, B., 2017. Phenomenological continuum theory of asphaltene-stabilized oil/water emulsions. Energy & Fuels, 31(2), pp. 1218-1225.
This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/