Loughborough University
Browse
1-s2.0-S0257897220311087-main.pdf (9.27 MB)

Physico-chemical characterisation of Ti-Nb-Sn alloys surfaces and their osteogenic properties

Download (9.27 MB)
journal contribution
posted on 2020-09-21, 10:05 authored by Carmen TorresCarmen Torres, Mattia Norrito, Jing Wang, Hugo Bell, Lorenzo Zani, Paul ConwayPaul Conway
Implanted tissue engineering devices interact with the host tissue through their surface in the first instance. Surface chemistry triggers cell activities that stimulate bone tissue-formation mechanisms for osteoblast maturation. In this work, the bioactivity of binary Ti-40Nb and Ti-10Sn and ternary Ti-10Nb-5Sn alloys, candidates for bioengineering applications, has been studied on their surface with a view to establish their osteogenic potential compared to that of c.p. Ti. Cellular population growth was used to assess proliferative and differentiative phenotypes (via protein and Alkaline Phosphatase markers), coupled with gene expression (i.e. Runx2 and OCN) to confirm maturation. The results show that Sn-containing alloys support cell bioactivity, increase metabolic activity (i.e. metabolites content) that indicate their preferred glycolytic pathway, promote cell attachment, differentiation and osteoblast maturation. Ti-40Nb, although also non-cytotoxic, retards osteoblastic differentiation and maturation. To elucidate the features that underpin this difference, their physical (i.e. wettability, electrical state near the surface) and chemical properties (i.e. oxide layer thickness and composition) were analysed independently from topology and roughness. It was concluded that composition (esp. TiO2 % content) is a more important factor than wettability and oxide layer thickness, and that although a negatively-charged surface (represented by the surface ζ potential) was preferential for cell bioactivity given its protein-adsorption readiness, its magnitude was not a defining cause.

Funding

Embedded Integrated Intelligent Systems for Manufacturing

Engineering and Physical Sciences Research Council

Find out more...

EPSRC Centre for Doctoral Training in Embedded Intelligence

Engineering and Physical Sciences Research Council

Find out more...

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Surface and Coatings Technology

Volume

403

Publisher

Elsevier B.V.

Version

  • VoR (Version of Record)

Rights holder

© The Authors

Publisher statement

This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution 4.0 International Licence (CC BY). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2020-09-18

Publication date

2020-09-21

Copyright date

2020

ISSN

0257-8972

Language

  • en

Depositor

Dr Carmen Torres-Sanchez. Deposit date: 18 September 2020

Article number

126439

Usage metrics

    Loughborough Publications

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC