Thakore_Plasmonics-Heat-Radiation_Sci.Reps.7.(2017).5696.pdf (7.52 MB)
Download file

Plasmonically enhanced reflectance of heat radiation from low-bandgap semiconductor microinclusions

Download (7.52 MB)
journal contribution
posted on 2017-09-05, 10:47 authored by Janika Tang, Vaibhav Thakore, Tapio Ala-NissilaTapio Ala-Nissila
© 2017 The Author(s). Increased reflectance from the inclusion of highly scattering particles at low volume fractions in an insulating dielectric offers a promising way to reduce radiative thermal losses at high temperatures. Here, we investigate plasmonic resonance driven enhanced scattering from microinclusions of low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating composite to tailor its infrared reflectance for minimizing thermal losses from radiative transfer. To this end, we compute the spectral properties of the microcomposites using Monte Carlo modeling and compare them with results from Fresnel equations. The role of particle size-dependent Mie scattering and absorption efficiencies, and, scattering anisotropy are studied to identify the optimal microinclusion size and material parameters for maximizing the reflectance of the thermal radiation. For composites with Si and Ge microinclusions we obtain reflectance efficiencies of 57-65% for the incident blackbody radiation from sources at temperatures in the range 400-1600 °C. Furthermore, we observe a broadbanding of the reflectance spectra from the plasmonic resonances due to charge carriers generated from defect states within the semiconductor bandgap. Our results thus open up the possibility of developing efficient high-Temperature thermal insulators through use of the low-bandgap semiconductor microinclusions in insulating dielectrics.


The authors gratefully acknowledge funding and support from the Academy of Finland, Center of Excellence Programme (2015–2017), Project No. 284621; the Aalto Energy Efficiency Research Program EXPECTS; and, the Aalto Science-IT project.



  • Science


  • Mathematical Sciences

Published in

Scientific Reports






TANG, J., THAKORE, V. and ALA-NISSILA, T., 2017. Plasmonically enhanced reflectance of heat radiation from low-bandgap semiconductor microinclusions. Scientific Reports, 7: 5696.


© the Authors. Published by the Nature Publishing Group


VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) licence. Full details of this licence are available at: by/4.0/

Acceptance date


Publication date



This is an Open Access Article. It is published by Nature Publishing Group under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: