posted on 2020-04-06, 10:39authored byYaotian Su, Mingping Zhou, Gang Sui, Jinle Lan, Hongtao ZhangHongtao Zhang, Xiaoping Yang
Polymer-based composites with high dielectric constant and low loss are highly desirable due to their inherent advantages of easy processability, flexibility, and lightweight. Herein, a functional nanofillers, halloysite nanotubes (HNTs) decorated reduced graphene oxide (rGO) hybrid microstructures (HNTs@rGO) was successfully prepared via controllable electrostatic self-assembly and in-situ heat reduction method. These hybrid microstructures combine characteristics of natural 1D ceramic nanotubes with large aspect ratio and high electric conductivity of rGO micro-sheets, which provided ideal material collocation in the construction of microcapacitors. The HNTs not only effectively prevented direct contact between the rGO micro-sheets in the composites but also played an important role in forming dielectric interface within microcapacitors. Consequently, an HNTs@rGO/polyvinyl butyral (PVB) composites containing a very low content of 5wt% rGO exhibited an ultra-high dielectric constant of 150 and an extremely low loss of 0.12 at 103 Hz. It is believed that the unique characteristics and facile fabrication process of HNTs@rGO/PVB composite make it a potentially excellent candidate for flexible polymer-based dielectric materials applied in the capacitor fields.
Funding
National Natural Science Foundation of China (No. 51873011 and No. U1664251)
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
This paper was accepted for publication in the journal Chemical Engineering Journal and the definitive published version is available at https://doi.org/10.1016/j.cej.2020.124910.