Porous_manuscript_v4.1.pdf (560.18 kB)
Download file

Porosity and pore size effect on the properties of sintered Ti35Nb4Sn alloy scaffolds and their suitability for tissue engineering applications

Download (560.18 kB)
journal contribution
posted on 11.10.2017, 10:35 by Carmen TorresCarmen Torres, John McLaughlin, Andrea Fotticchia
Porous scaffolds manufactured via powder metallurgy and sintering were designed for their structure (i.e. pore size and porosity) and mechanical properties (stiffness, strength) to be controlled and tailored to mimic those of human bone. The scaffolds were realised to fulfil three main objectives: (i) to obtain values of stiffness and strength similar to those of trabecular (or spongy) bone, with a view of exploiting these as bone grafts that permit cell regeneration, (ii) to establish a relationship between stiffness, strength and density that allows tailoring for mass customisation to suit patient's needs; and (iii) to assess alloy cytotoxicity and biocompatibility via in vitro studies. The results obtained using a very low stiffness alloy (Ti35Nb4Sn) further lowered with the introduction of nominal porosity (30–70%) with pores in the ranges 180–300 μm and 300–500 μm showed compatibility for anatomical locations typically subjected to implantation and bone grafting (femoral head and proximal tibia). The regression fitting parameters for the linear and power law regressions were similar to those found for bone specimens, confirming a structure favourable to capillary network formation. Biological tests confirmed non-cytotoxicity of the alloy. Scaffolds of porosity nominal 50%vol and pore range 300–500 μm performed best in the adhesion and propagation assays due to a good balance between surface area and pore cavity volume.

History

School

  • Mechanical, Electrical and Manufacturing Engineering

Published in

Journal of Alloys and Compounds

Citation

TORRES-SANCHEZ, C., MCLAUGHLIN, J. and FOTTICCHIA, A., 2018. Porosity and pore size effect on the properties of sintered Ti35Nb4Sn alloy scaffolds and their suitability for tissue engineering applications. Journal of Alloys and Compounds, 731, pp.189-199.

Publisher

© Elsevier

Version

AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Acceptance date

04/10/2017

Publication date

2018

Notes

This paper was accepted for publication in the journal Journal of Alloys and Compounds and the definitive published version is available at https://doi.org/10.1016/j.jallcom.2017.10.026

ISSN

1873-4669

Language

en