posted on 2021-08-02, 11:25authored byGeorge Zacharopoulos, Francesco SellaFrancesco Sella, Kathrin Cohen Kadosh, Charlotte Hartwright, Uzay Emir, Roi Cohen Kadosh
Previous research has highlighted the role of glutamate and gamma-aminobutyric acid (GABA) in learning and plasticity. What is currently unknown is how this knowledge translates to real-life complex cognitive abilities that emerge slowly and how the link between these neurotransmitters and human learning and plasticity is shaped by development. While some have suggested a generic role of glutamate and GABA in learning and plasticity, others have hypothesized that their involvement shapes sensitive periods during development. Here we used a cross-sectional longitudinal design with 255 individuals (spanning primary school to university) to show that glutamate and GABA in the intraparietal sulcus explain unique variance both in current and future mathematical achievement (approximately 1.5 years). Furthermore, our findings reveal a dynamic and dissociable role of GABA and glutamate in predicting learning, which is reversed during development, and therefore provide novel implications for models of learning and plasticity during childhood and adulthood.
Funding
European Research Council (Learning&Achievement 338065, URL: https://erc.europa.eu/) (RCK)
This is an Open Access Article. It is published by Public Library of Science under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0). Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/