posted on 2008-11-06, 09:52authored byPeter A. Jones, Simon Austin, Peter Robins
A semi-analytical model is presented, based on conventional principles of mechanics, to predict the flexure behaviour of steel fibre reinforced concrete. The model uses a stress-block approach to represent the stresses that develop at a cracked section by three discrete stress zones: (a) a compressive zone; (b) an uncracked tensile zone; and (c) a cracked tensile zone. It is further shown that the stress-block, and hence flexural behaviour, is a function of five principal parameters: compressive stress–strain relation; tensile stress–strain relation; fibre pull-out behaviour; the number and distribution of fibres across the cracked section in terms of their positions, orientations and embedment lengths; and the strain/crack-width profile in relation to the deflection of the beam. An experimental investigation was undertaken on both cast and sprayed specimens to obtain relationships for use in the model. The results of the study showed a reasonable agreement between the model predictions and experimental results. However, the accuracy of the model is probably unacceptable for it to be currently used in design. A subsequent analysis highlighted the single fibre pull-out test and the sensitivity of the strain analysis tests as being the main cause of the discrepancies.
History
School
Architecture, Building and Civil Engineering
Citation
JONES, P.A., AUSTIN, S.A. and ROBINS, P.J., 2008. Predicting the flexural load–deflection response of steel fibre reinforced concrete from strain, crack-width, fibre pull-out and distribution data. Materials and Structures, 41 (3), pp. 449-463.