Loughborough University
Author Accepted manuscript Predicting the large scale.pdf (1.49 MB)

Predicting the large-scale consequences of offshore wind turbine array development on a North Sea ecosystem

Download (1.49 MB)
journal contribution
posted on 2017-08-10, 12:04 authored by Johan van der Molen, Helen Smith, Paul LepperPaul Lepper, Sian Limpenny, Jon Rees
Three models were applied to obtaina first assessment of some of the potential impacts of large-scale operational wind turbine arrays on the marine ecosystem in a well-mixed area in a shelf sea: a biogeochemical model,a wave propagation model and an a coustic energy flux model.The results of the models are discussed separately and together to elucidate the combined effects. Overall,all three models suggested relatively weak environmental changes for the mechanisms included in this study, however these are only a subset of all the potential impacts,and a number of assumptions had to be made. Further work is required to address these assumptions and additional mechanisms. All three models suggested most of the changes with in the wind turbine array,and small changes up to several tens of km outside the array. Within the array, the acoustic model indicated the most concentrated, spatially repetitive changes to the environment,followed by the SWAN wave model,and the biogeochemical model being the most diffuse. Because of the different spatial scales of the response of the three models,the combined results suggested a spectrum of combinations of environmental changes with in the wind turbine array that marine organism smight respond to. The SWAN wave model and the acoustic model suggested a reduction in changes with increasing distance between turbines. The SWAN wave model suggested that the biogeochemical model, because of the in ability of its simple wave model to simulate wave propagation,over-estimated the biogeochemical changes by a factor of 2 or more. The biogeochemical model suggested that the benthic system was more sensitive to the environmental changes than the pelagic system.


The work was carried out as part of the EBAO project (Optimising Array Form for Energy Extraction and Environmental Benefit, No. NE/J004227/1), and was jointly funded by NERC and Defra (Cefas contract C5325).



  • Mechanical, Electrical and Manufacturing Engineering

Published in

Continental Shelf Research




60 - 72


VAN DER MOLEN, J. ... et al, 2014. Predicting the large-scale consequences of offshore wind turbine array development on a North Sea ecosystem. Continental Shelf Research, 85, pp. 60-72.




  • AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by-nc-nd/4.0/

Publication date



This paper was accepted for publication in the journal Continental Shelf Research and the definitive published version is available at http://dx.doi.org/10.1016/j.csr.2014.05.018.




  • en

Usage metrics

    Loughborough Publications


    Ref. manager