Food-grade water-in-oil-in-water (W/O/W) multiple emulsions with a volume median diameter of outer droplets of 50 − 210 μm were produced by injecting a water-in-oil (W/O) emulsion at the flux of 30 L m−2 h−1 through a 10-μm pore electroplated nickel membrane oscillating at 10 − 90 Hz frequency and 0.1 − 5 mm amplitude in 2 wt% aqueous Tween® 20 (polyoxyethylene sorbitan monolaurate) solution. The oil phase in the primary W/O emulsion was 5 wt% PGPR (polyglycerol polyricinoleate) dissolved in sunflower oil and the content of water phase in the W/O emulsion was 30 vol%. The size of outer droplets was precisely controlled by the amplitude and frequency of membrane oscillation. Only 3 − 5% of the inner droplets with a mean diameter of 0.54 μm were released into the outer aqueous phase during membrane emulsification. A sustained release of 200 ppm copper (II) loaded in the inner aqueous phase was investigated over 7 days. 95% of Cu(II) initially present in the inner water phase was released in the first 2 days from 56-μm diameter multiple emulsion droplets and less than 15% of Cu(II) was released over the same interval from 122 μm droplets. The release rate of Cu(II) decreased with increasing the size of outer droplets and followed non-zero-order kinetics with a release exponent of 0.3 − 0.5. The prepared multiple emulsions can be used for controlled release of hydrophilic actives in the pharmaceutical, food, and cosmetic industry.
History
School
Aeronautical, Automotive, Chemical and Materials Engineering
Department
Chemical Engineering
Citation
VLADISAVLJEVIC, G.T. ... et al., 2014. Production of food-grade multiple emulsions with high encapsulation yield using oscillating membrane emulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 458, pp.78-84.