Loughborough University
Browse
1-s2.0-S1385894716310002-main.pdf (3.01 MB)

Production of spherical mesoporous molecularly imprinted polymer particles containing tunable amine decorated nanocavities with CO2 molecule recognition properties

Download (3.01 MB)
journal contribution
posted on 2016-07-26, 14:51 authored by Ali Nabavi, Goran VladisavljevicGoran Vladisavljevic, Eseosa M. Eguagie, Beichen Li, Stella GeorgiadouStella Georgiadou, Vasilije Manovic
Novel spherical molecularly imprinted polymer (MIP) particles containing amide-decorated nanocavities with CO2 recognition properties in the poly[acrylamide-co-(ethyleneglycol dimethacrylate)] mesoporous matrix were synthesized by suspension polymerization using oxalic acid and acetonitrile/toluene as dummy template and porogen mixture, respectively. The particles had a maximum BET surface area, SBET, of 457 m2/g and a total mesopore volume of 0.92 cm3/g created by phase separation between the copolymer and porogenic solvents. The total volume of the micropores (d < 2 nm) was 0.1 cm3/g with two sharp peaks at 0.84 and 0.85 nm that have not been detected in non-imprinted polymer material. The degradation temperature at 5% weight loss was 240–255 °C and the maximum equilibrium CO2 adsorption capacity was 0.56 and 0.62 mmol/g at 40 and 25 °C, respectively, and 0.15 bar CO2 partial pressure. The CO2 adsorption capacity was mainly affected by the density of CO2-philic NH2 groups in the polymer network and the number of nanocavities. Increasing the content of low-polar solvent (toluene) in the organic phase prior to polymerization led to higher CO2 capture capacity due to stronger hydrogen bonds between the template and the monomer during complex formation. Under the same conditions, molecularly imprinted particles showed much higher CO2 capture capacity compared to their non-imprinted counterparts. The volume median diameter (73–211 μm) and density (1.3 g/cm3) of the produced particles were within the range suitable for CO2 capture in fixed and fluidized bed systems.

Funding

The authors gratefully acknowledge the financial support for this work by coERCe granted by Innovate UK, project Grant: 102213, and Cambridge Engineering and Analysis Design (CEAD) Ltd.

History

School

  • Aeronautical, Automotive, Chemical and Materials Engineering

Department

  • Chemical Engineering

Published in

Chemical Engineering Journal

Volume

306

Pages

214-225

Citation

NABAVI, S.A. ... et al, 2016. Production of spherical mesoporous molecularly imprinted polymer particles containing tunable amine decorated nanocavities with CO2 molecule recognition properties. Chemical Engineering Journal, 306, pp. 214-225.

Publisher

© Elsevier

Version

  • VoR (Version of Record)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution (CC BY 4.0) licence. Full details of this licence are available at: https://creativecommons.org/licenses/by/4.0/

Acceptance date

2016-07-14

Publication date

2016-07-16

Copyright date

2016

Notes

This is an Open Access article published by Elsevier and distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), https://creativecommons.org/licenses/by/4.0/

ISSN

1873-3212

Language

  • en