Projecting_battery_adoption_in_the_prosumer_era.pdf (5.91 MB)
Download file

Projecting battery adoption in the prosumer era

Download (5.91 MB)
journal contribution
posted on 27.02.2019, 15:42 authored by Edward BarbourEdward Barbour, Marta Gonzalez
Solar photovoltaic (PV) has the potential to make an important contribution to global sustainability, however, the misalignment between solar production and residential demand presents challenges for widespread PV adoption. Combining PV and storage is one way that this challenge can be overcome. In this work, we use one year of smart meter data from 369 consumers in three different US regions and calculate their economic benefits from both PV and coupled PV-battery systems. We consider a range of different electricity pricing schemes from the consumer regions, including both Feed-In-Tariff (FIT) and Net-Energy-Metering (NEM) policies. Significantly, our work uses real demand data, real PV generation data and optimizes each individual consumer's battery operation to minimize their electricity bill. Furthermore, we study the effect of batteries on consumer self-sufficiency, which is important because increasing self-sufficiency is a primary motivating factor behind battery adoption. We find that PV is profitable for the majority of consumers with most current pricing scenarios but PV-battery systems are always less profitable. However, batteries can provide very significant increases in self-sufficiency and we find that a majority of consumers can exceed 70% self-sufficiency with a 20 kW h battery and a PV system that produces the equivalent of their consumption. This is compared to an average self-sufficiency of 35% with PV only. Finally, recognizing that a number of factors could lead to profitable batteries in future, we study the sensitivity of battery profitability to future electricity prices in a FIT scenario, also accounting for future decreases in PV and battery costs. We find that if PV-battery systems are to become better investments than PV-only for the majority of consumers, retail electricity prices above $0.40/kW h and FIT rates below $0.05/kW h are a likely requirement.


The research was supported in part by grants from the Center for Complex Engineering Systems, the MIT Energy initiative and the MISTI-Brazil exchange program.



  • Mechanical, Electrical and Manufacturing Engineering

Published in

Applied Energy




356 - 370


BARBOUR, E. and GONZALEZ, M., 2018. Projecting battery adoption in the prosumer era. Applied Energy, 215, pp.356-370.


© Elsevier


AM (Accepted Manuscript)

Publisher statement

This work is made available according to the conditions of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) licence. Full details of this licence are available at:

Publication date



This paper was published in the journal Applied Energy and the definitive published version is available at